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Test of Mathematics for University Admission, 2017 Paper 2 Solutions

Introduction for students

These solutions are designed to support you as you prepare to take the Test of Mathematics for
University Admission. They are intended to help you understand how to answer the questions,
and therefore you are strongly encouraged to attempt the questions first before looking at
these worked solutions. For this reason, each solution starts on a new page, so that you can
avoid looking ahead.

The solutions contain much more detail and explanation than you would need to write in the
test itself – after all, the test is multiple choice, so no written solutions are needed, and you may
be very fluent at some of the steps spelled out here. Nevertheless, doing too much in your head
might lead to making unnecessary mistakes, so a healthy balance is a good target!

There may be alternative ways to correctly answer these questions; these are not meant to be
‘definitive’ solutions.

The questions themselves are available on the ‘Preparing for the test’ section on the Admissions
Testing website.

Paper 2 uses ideas from mathematical logic. These are explained in detail in the ‘Notes on Logic
and Proof’ on the above webpage.
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Question 1

We first expand the brackets and split up the fraction:

y =
(1− 3x)2

2x
3
2

=
1− 6x+ 9x2

2x
3
2

= 1
2x
− 3

2 − 3x−
1
2 + 9

2x
1
2

and we can now differentiate this to get

dy

dx
= 1

2(−3
2)x−

5
2 − 3(−1

2)x−
3
2 + 9

2 ×
1
2x
− 1

2

= −3
4x
− 5

2 + 3
2x
− 3

2 + 9
4x
− 1

2

and so the correct answer is A.
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Question 2

A quick sketch (not drawn to scale) may help us here.

x

y

0

P (0, 6)

Q(1, 8)

R(r, 0)

S

PQ has length
√

12 + 22 =
√

5 by Pythagoras’s theorem.

The gradient of PQ is
8− 6

1− 0
= 2, so QR has gradient −1

2

We could now find the coordinates of R by finding the equation of the line QR and substituting
in y = 0 to find the x-coordinate of R.

Alternatively, if we set the coordinates of R to be (r, 0), we can just use the known gradient of
QR to find r:

0− 8

r − 1
= −1

2

so 8
r−1 = 1

2 giving r − 1 = 16, hence r = 17

Therefore the length QR is√
(r − 1)2 + (−8)2 =

√
162 + 82 = 8

√
22 + 12 = 8

√
5

which gives the area of PQRS as
√

5× 8
√

5 = 40, and the answer is E.

Interestingly, it turns out that we only actually needed r−1; we did not need to know the actual
coordinates of R.

Version 1.0, April 2019 Page 4

© UCLES 2019



Test of Mathematics for University Admission, 2017 Paper 2 Solutions

Question 3

The first term is a = 2
√

3 and the common ratio is r. So the fourth term is ar3 = 2
√

3 r3 = 9
4

and hence

r3 =
9

8
√

3
=

9
√

3

8× 3
=

3
√

3

8

by rationalising the denominator.

We can write 3
√

3 as
√

27 or 3
3
2 (since we want to take the cube root of this expression), and so

we have

r3 =
3

3
2

8
=⇒ r =

3
1
2

2
=

√
3

2
.

(There is a unique real cube root of any real number, unlike the case for square roots.)

We can now find the sum to infinity of the geometric progression:

S∞ =
a

1− r

S∞ =
2
√

3

1−
√
3
2

=
4
√

3

2−
√

3
multiplying by

2

2

=
4
√

3(2 +
√

3)

(2−
√

3)(2 +
√

3)
rationalising the denominator

=
4(2
√

3 + 3)

1
paying attention to the options offered

= 4(2
√

3 + 3)

and the correct answer is G.
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Question 4

Let’s run through every step of the argument with care.

The first step is ‘tanx =
√

3 so x = 60◦’. We should first check that x = 60◦ is a solution: using
our knowledge of trigonometry and special angles, we know that tan 60◦ =

√
3, so it is.

But we also know that tan is periodic with period 180◦: there are multiple values of x which
have tanx =

√
3, and all solutions to tanx =

√
3 are therefore of the form x = 60◦ + 180n◦ for

n ∈ Z.

So there is unquestionably an error in the student’s answer, but we do not yet know whether
there is more than one possible value of sin 2x.

It follows from x = 60◦ + 180n◦ that 2x = 120◦ + 360n◦

It is certainly the case that sin 120◦ =
√
3
2 . But since sin is periodic with period 360◦, we see

that sin(120◦ + 360n◦) =
√
3
2 for every n ∈ Z.

So there is only one possible value of sin 2x, but the student should have considered other possible
values of x for which tanx =

√
3; this is option B.
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Question 5

We note from the context of the statements that 91 = 7× 13 shows that 91 is not prime. It also
shows that 91 is a multiple of 7 and a multiple of 13.

We use a counterexample when we are trying to disprove a statement of the form ‘if A then B’;
the counterexample will be a case where A is true but B is false. We can also use counterexamples
to disprove statements of the form ‘for all x, A is true’: a single example of an x for which A is
false shows that the statement is false.

We first rewrite each of the statements given into an explicit ‘if . . . then’ statement or an explicit
‘for all’ statement.

(With experience, this is not actually necessary; once you have seen enough statements, it
becomes clear what a counterexample ‘looks like’. But for the purposes of reaching this point,
it can be useful to go through these formal steps.)

1 The word ‘when’ in this context has the same logical meaning as ‘if’, so the statement can be
rewritten as ‘if p is an odd prime, then 10p2 + 1 and 10p2 − 1 are both prime’.

So if 91 = 7× 13 is to provide a counterexample, we need an odd prime p with 10p2 + 1 = 91
or 10p2− 1 = 91, since in that case, ‘10p2 + 1 and 10p2− 1 are both prime’ will be false. It is
clear that p = 3 achieves this, for then 10p2 + 1 = 91.

2 We can write this statement as an explicit ‘for all’ statement, as ‘Every prime. . . ’ suggests
this meaning. The statement becomes: ‘For all primes p where p > 5, p = 6n + 1 for some
integer n’.

So a counterexample would be a prime p with p > 5 but for which p = 6n+1 is false. However,
91 is not prime, so 91 = 7× 13 does not provide a counterexample. The fact that 91 = 6n+ 1
for n = 15 is immaterial, and the fact that the statement is false (as 11 = 6× 2− 1) does not
help either.

3 We can again write this as an explicit ‘for all’ statement; the English is better with the
equivalent ‘for each’, though: ‘For each n which is a multiple of 7 greater than 7, n is not
prime.’

If we now look at 91 = 7 × 13, we see that 91 is a multiple of 7 greater than 7. However,
91 is not prime, so 91 is an example of where the statement does hold, rather than being a
counterexample. In fact, the given statement is true, so there cannot be any counterexamples,
and we need not have looked at 91 = 7× 13 at all.

So the answer is B.
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Question 6

We calculate the first few values of un in the hope that this will show a clear pattern.

We have

u0 = 1

u1 =

∫ 1

0
4x.1 dx

=
[
2x2
]1
0

= 2

u2 =

∫ 1

0
4x.2 dx

=
[
4x2
]1
0

= 4

u3 =

∫ 1

0
4x.4 dx

=
[
8x2
]1
0

= 8

The pattern is now apparent: un = 2n, and so the answer is A.

If we wanted to prove this to be true, we could use induction. The result is clearly true when
n = 0, so assume that it is true when n = k. Then

uk+1 =

∫ 1

0
4x.2k dx

=
[
2.2kx2

]1
0

= 2.2k

= 2k+1

and so the result holds for n = k + 1. Hence by induction, un = 2n for all n > 0.
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Question 7

The graph of y = f(x) looks like an exponential graph, so all of the four given statements
certainly seem plausible.

One approach to this question is to think about the shapes of different exponential graphs.
Another is to consider a specific value of x, and see what happens.

If we take x = 1, ax = a, and f(1) > a. We can now substitute x = 1 into the two expressions
for f(x) offered: f(x) = bx gives f(1) = b, so we would need b > a. Similarly, f(x) = akx gives
f(1) = ak. But it is clear from the solid line that a > 1 (as a0 = 1 and a1 = a > 1), so ak > a
requires k > 1.

So both statements 1 and 3 could be true, but not 2 or 4.

We can be even more careful and show that we cannot have just one of 1 and 3 being true. If
statement 3 is true, we have f(x) = akx = (ak)x, so writing b = ak > a shows that statement 1
is true; likewise, if statement 1 is true, we have f(x) = bx = (aloga b)x = a(loga b)x and loga b > 1,
so statement 3 is also true.

Hence the correct answer is E.
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Question 8

We can start by estimating or calculating the values.

A 2 < log2 7 < 3, since log2 4 = 2 and log2 8 = 3

B (2−3 + 2−2)−1 = (18 + 1
4)−1 = (38)−1 = 8

3 which again lies between 2 and 3

C π/3 is just a little greater than 1, so 2π/3 is a little greater than 2

D We expand (
√

2− 1)3 using the binomial theorem to get

(
√

2)3 − 3(
√

2)2 + 3
√

2− 1 = 2
√

2− 6 + 3
√

2− 1 = 5
√

2− 7

Thus
1

4(
√

2− 1)3
=

1

4(5
√

2− 7)
=

5
√

2 + 7

4((5
√

2)2 − 72)
=

5
√

2 + 7

4

This is greater than 5+7
4 = 3, so is certainly not the smallest in value.

E sin(π4 ) = 1√
2
, so 4 sin2(π4 ) = 4

(
1√
2

)2
= 4× 1

2 = 2

Since A, B and C are each greater than 2, the correct answer is E.
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Question 9

Commentary: This is Fermat’s Last Theorem for the case n = 3; it was first proven by
Euler in the 18th century. The attempted proof here, though, is deeply flawed, as we will
see.

Line I is fine: this is a simple rearrangement.

Line II is fine: this is a standard algebraic identity which is easy to check.

Line III is problematic. It is certainly true that a 6 a2 and c− b < c+ b 6 c2 + b2 < c2 + cb+ b2.
It is therefore plausible that a = c − b and a2 = c2 + cb + b2, but it is far from necessary. Of
course we cannot give an explicit example to show this, as there are no sets of positive integers
a, b and c with a3 +b3 = c3. But we can observe that if c−b = 1, we must have a3 = c2 +bc+b3,
and this possibility has not been considered; alternatively, we could consider a case where a is
not prime such as a = 6; then we can write a3 = 63 = 3× 72, and we could have c− b = 3 and
c2 + cb+ b2 = 72. Either way, it does not necessarily follow that a = c− b and a2 = c2 + cb+ b2,
so this step is wrong.

The correct answer is D.
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Question 10

To show that a condition is sufficient, we need to show that if the condition is satisfied, then∫ 3
1 f(x) dx = 0

Note that it is not enough for us to find an example of a function which satisfies
∫ 3
1 f(x) dx = 0

and then to check whether the function satisfies the suggested conditions, as this would be
checking whether the conditions are necessary, not whether they are sufficient.

A Knowing the value of f(x) at a single value of x cannot hope to force the integral to be 0;
consider, for example, the quadratic f(x) = (x− 2)2

B Likewise, knowing the value of f(x) at the endpoints is not sufficient; consider, for example,
the quadratic f(x) = (x− 1)(x− 3)

C This says that the function is odd: the values of f(x) for negative values of x match those for
positive values of x. But it gives no control over the values of f(x) between x = 1 and x = 3,
so it cannot be a sufficient condition. For example, f(x) = x satisfies f(−x) = −f(x), but∫ 3
1 x dx > 0

So it is one of D and E, both of which look complicated. E looks marginally easier to deal
with, as x − 2 = −(2 − x). But that means that if we write y = 2 − x, condition E becomes
f(−y) = −f(y), which is exactly the same as condition C. So condition E is not sufficient.

By elimination, therefore, the correct answer must be condition D.

Let us show that D is, indeed, sufficient. It would help to see what is going on if we write x+2
as 2 + x, so the condition becomes f(2 + x) = −f(2− x). If we take 0 < x 6 1, this shows that
there is rotational symmetry about the point (2, 0):

x
2 2 + a2− a

And when x = 0, we get f(2) = −f(2) so f(2) = 0

So the graph of y = f(x) itself might look like this:

x
2

Since the graph of y = f(x) has rotational symmetry about (2, 0), the integrals
∫ 2
1 f(x) dx and∫ 3

2 f(x) dx will be negative of each other, and so condition D is sufficient for
∫ 3
1 f(x) dx = 0.
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Question 11

We can approach this question algebraically or graphically.

We start with an algebraic approach. We first note that f(x) > 0 for all x > 0 as f(x) is
increasing. So the region described first, with area R, lies entirely above (or on) the x-axis, and

R =

∫ b

a
f(x) dx

We note that g(x) = f(x) + 2f(b) > 0 for x > 0 as f(x) > 0 and f(b) > 0. Then the area required
under the graph g(x) is given by∫ b

a
g(x) dx =

∫ b

a
f(x) + 2f(b) dx

=

∫ b

a
f(x) dx+ 2f(b)

∫ b

a
1 dx

= R+ 2f(b)(b− a)

On the second line we have split the integral into a sum of two integrals, and taken out the
constant factor of 2f(b) from the second integral. Thus the answer is option B.

We could also work graphically. We can sketch the graphs of f(x) and g(x), making up a suitable
increasing shape for f(x):

R
x

y

y = f(x)

y = g(x) = f(x) + 2f(b)

0 a b

f(b)

2f(b)

It is clear from this sketch that the area under the graph of y = g(x) is formed of a rectangle
which is (b− a) by 2f(b) in size, and the area under the original graph, R, so that the required
area is R+ (b− a)× 2f(b).
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Question 12

We clearly need to sketch the graph of y = tanx onto the given sketch.

This graph has asymptotes at x = ±π
2 , and passes through the points (π4 , 1) and (−π

4 ,−1).
Since the function is increasing as it passes through these points, it must lie below the graph of
y = sin 2x between 0 and π

4 , and above it between −π
4 and 0.

This results in the following graph:

x

y

0−π
2

−π
4

π

4

π

2

−1.5

−1

−0.5

0.5

1

1.5

We now pick various values for x and see which order the functions lie in. For example, when
x is close to −π

2 , we have tanx < cos 2x < sin 2x. Here are some cases as we move from x = −π
2

to x = π
2 , each together with the option it eliminates:

x value Function order Option

x close to −π
2 tanx < cos 2x < sin 2x F

x just less than −π
4 tanx < sin 2x < cos 2x E

x just more than −π
4 sin 2x < tanx < cos 2x D

x just more than 0 tanx < sin 2x < cos 2x E
x just more than π

8 tanx < cos 2x < sin 2x F
x just less than π

4 cos 2x < tanx < sin 2x B
x just more than π

4 cos 2x < sin 2x < tanx A

The only option which is not eliminated is C: sin 2x < cos 2x < tanx for some real number x
with −π

2 < x < π
2

It is also clear from the graph that this is impossible: the only time that tanx is greater than
both sin 2x and cos 2x is when π

4 < x < π
2 , and in the whole of that range, cos 2x < sin 2x

Version 1.0, April 2019 Page 14

© UCLES 2019



Test of Mathematics for University Admission, 2017 Paper 2 Solutions

Question 13

One way to think about this is to write it as a column addition. If we write a × 10−3 as
0.00a1a2 . . . , where a = a1.a2a3 . . . (as a decimal expansion), and similarly for the other num-
bers, the sum becomes:

0 . 0 0 a1 a2 . . .
+ 0 . 0 b1 b2 b3 . . .

0 . c1 c2 c3 c4 . . .

We see that, as c1 > 1, there must be a carry from the hundredths column to the tenths column,
and hence b1 = 9, so b > 9. If b = 9 exactly, then there cannot be a carry; we would just get a
sum of 0.09a1a2 . . . in that case. So we must have b > 9, and II must be true.

There is no need to have a1 = 9; we could, for example, have a1 = 8 and b2 = 3 and still have a
carry. So I is not necessary true.

Comparing a and b to c, we know that 1 6 c < 2, as c1 = 1. We saw that a1 = 8 is possible, so
a > 8 is possible, and a < c (statement III) is not necessarily true.

We have already shown that b > 9, so since c < 2, b > c (statement IV) is never true.

So the answer is B.
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Question 14

We can complete the square for the original quadratic:

x2 − 2bx+ c = (x− b)2 − b2 + c

so the vertex P is at (b, c− b2).

The graph given shows that b > 0 and c− b2 > 0.

The new quadratic is
x2 − 2Bx+ c = (x−B)2 −B2 + c

so the new vertex is at (B, c−B2).

Now B > b, so the new vertex is to the right of P . As B > b > 0, B2 > b2 so c− B2 < c− b2,
and the new vertex is below P .

Therefore the correct answer is F.
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Question 15

From the question, it seems that we are expected to work out the first few values of the functions
f(n) and g(n), and to look for a pattern.

n f(n) g(n)

1 5 3
2 16 8
3 8 4
4 4 2
5 2 1
6 1 6
7 4 3
8 2 8
9 1 4

10 4 2
11 2 1
12 1 6

So after the first three terms, f(n) repeats every 3 terms: for k > 1, f(3k+ 1) = 4, f(3k+ 2) = 2,
f(3k+3) = 1, while g(n) repeats every 6 terms, and we can write similar expressions for g(6k+r).

We could either calculate f(n)−g(n) for all of these terms, and find the repeating pattern there,
or find f(1000) and g(1000) separately. The latter approach seems like less effort, so we will go
for that.

Note that 1000 = 3× 333 + 1 = 6× 166 + 4. So f(1000) = 4, g(1000) = 2.

Thus f(1000)− g(1000) = 4− 2 = 2 and the answer is D.
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Question 16

For a function to be a counterexample to (∗), it must be the case that f(x) is an integer for every
integer x, but for which f ′(x) is not an integer for every integer x.

We can start by substituting in x = 0 and x = 1 into the given functions to see whether f(x) is
even potentially an integer for every integer x:

A f(0) = 1
4 . This cannot be a counterexample.

B f(0) = 0, f(1) = 3
2 . This cannot be a counterexample.

C f(0) = 0, f(1) = 2. This could potentially be a counterexample.

D f(0) = 0, f(1) = 1. This could potentially be a counterexample.

So we now only need to consider C and D.

Our next step is to differentiate them and then substitute x = 0 and x = 1 into the derivatives.

C f ′(x) =
4x3 + 3x2 + 2x+ 1

2
, f ′(0) = 1

2 , so this is potentially a counterexample.

D f ′(x) =
4x3 + 6x2 + 2x

4
, f ′(0) = 0, f ′(1) = 4.

It therefore seems most likely that C is a counterexample and D is not. To prove this, we need
to show that for C, f(x) is an integer for every integer x, and that for D, either f(x) is not an
integer for some integer x or that f ′(x) is an integer for every integer x.

For the purposes of the test, it probably makes most sense at this point to choose the answer C
and move on, but we will go on here to complete the solution.

For C, we have

f(x) =
x(x3 + x2 + x+ 1)

2
=
x(x+ 1)(x2 + 1)

2

We see that x(x+ 1) is even if x is even and also if x is odd, so x(x+ 1)(x2 + 1) is even for every
integer x, hence f(x) is an integer for every integer x. Therefore C is a counterexample.

For D, we have

f(x) =
x2(x2 + 2x+ 1)

4
=
x2(x+ 1)2

4

Since x(x + 1) is even for every integer x, as we just showed, x2(x + 1)2 is a multiple of 4 for
every integer x, and thus f(x) is an integer for every integer x.

For the derivative,

f ′(x) =
x(2x2 + 3x+ 1)

2
=
x(x+ 1)(2x+ 1)

2

and as before, the numerator is always even, so f ′(x) is an integer for every integer x. Therefore
D is not a counterexample.
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Question 17

We begin with the original statement with S replaced by T :

T is stapled if and only if for every whole number a which is in T , there exists
a prime factor of a which divides at least one other number in T .

Therefore, negating this:

T is not stapled if and only if it is not the case that for every whole number a
which is in T , there exists a prime factor of a which divides at least one other
number in T .

We can negate the outer ‘for every’ to get ‘there exists . . . such that it is not the case
that . . . ’:

T is not stapled if and only if there exists a whole number a which is in T such
that it is not the case that there exists a prime factor of a which divides at least
one other number in T .

So the answer is one of E, F, G, H.

Our current phrasing is ‘it is not the case that there exists’; we could convert this into ‘for
every . . . , it is not the case that . . . ’, but none of these options use this wording. Instead, E,
F and G use the wording ‘there is no prime factor’, which is the same as ‘there does not exist a
prime factor’, which in turn is the same as ‘it is not the case that there exists a prime factor’.
So we can rewrite the previous statement as:

T is not stapled if and only if there exists a whole number a which is in T such
that there is no prime factor of a which divides at least one other number in T .

Hence the correct answer is F.
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Question 18

We could first check to see whether the answer makes sense. If we substitute n = 1 into the
original equation, we get 1

4 <
(

1
32

)10
, which is clearly nonsense, so there has to be a mistake

somewhere in the argument.

There are two straightforward approaches to finding the mistake: one is to check that the logic
of each step works, the other is to try a value of n which either does or does not solve the original
inequality, and check that each step works for this value of n. Since we know that the solution
is wrong, it must fail somewhere, at least when n = 1.

Approach 1: checking the logic

Clearly step (V) is correct, so the mistake must be earlier.

Step (I) applies the same function to both sides of an inequality, so it looks fine.

Step (II) is just a simplification of the logarithm expressions using the power rule. The powers
are positive integers, and both 1

4 and 1
32 are positive, so this step is fine.

Starting from the other end, step (IV) is just a calculation, and we can check quite easily that
it is correct.

Step (III) looks like it is probably wrong, as we are performing a division with an inequality.

However, with more care, we can calculate log 1
2

(
1
4

)
= 2 (as we need to do to check step (IV)

anyway), so step (III) is just dividing by 2, and is actually fine.

Unfortunately, though, every step looks fine.

Working through them once more, steps (IV) and (V) are certainly fine, as is step (III). We
have argued that step (II) is correct, so by elimination it must be step (I) which is wrong.

It is helpful to sketch a graph of y = log 1
2
x to understand why step (I) is wrong. We have

log 1
2
(12) = 1, log 1

2
1 = 0, log 1

2
2 = −1, so the graph looks like this:

x

y

0 1

So log 1
2
x is a decreasing function: if x < y, then log 1

2
x > log 1

2
y; in other words, log 1

2
reverses

the direction of an inequality. Therefore step (I) is incorrect: the inequality should have been
reversed in this step.

The correct answer is therefore B.
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Approach 2: substituting a value of n

We have already shown that n = 1 does not satisfy the original inequality, yet it is given as
a solution at the end of step (V). So we use this value of n to find at least one error in the
argument.

Note that this approach is not guaranteed to work: there may be other errors in the argument
that will escape detection by this method, but given that the options tell us that only one step
is invalid, it will be sufficient for our purposes.

It will help us with our calculations if we write everything in terms of powers of 1
2 .

The original inequality can be written as(
1

2

)2n

<

(
1

2

)50

Substituting n = 1 gives (
1

2

)2

<

(
1

2

)50

which is not true.

After step (I), the inequality reads

log 1
2

(
1

2

)2n

< log 1
2

(
1

2

)50

Substituting n = 1 gives

log 1
2

(
1

2

)2

< log 1
2

(
1

2

)50

which we can simplify to
2 < 50

which is true.

So something has gone wrong in step (I), and this is where the error lies.

Commentary: There is a slightly subtle question about whether the student intended
each of the steps in this argument to be reversible. For example, if a student started with
the statement x+ 5 = 8 and deduced x > 0, they have made a correct deduction (though
not ‘solved the equation’), but the argument is not reversible: x > 0 does not imply that
x+ 5 = 8. So we will assume that in this case they intend to say that 1 6 n 6 24 are all
solutions to the original equation.

It follows that step (I) is where the mistake lies, as n = 1 satisfies the inequality after
step (I) but not the inequality before it.

If we did not make this assumption about the student’s intentions, we could repeat the
argument above with a value of n which does satisfy the original inequality, such as
n = 100; then the first inequality is true but the second inequality, obtained after step (I),
is false, so the proposed implication is false.
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Question 19

We recall that a ‘sufficient condition’ means that if the condition holds, then the equation has
exactly one real root.

We can start by sketching the graph of the cubic y = x3 − 3x2 + a, noting that the impact of
changing a is just to translate the graph vertically.

We differentiate to find the stationary points: dy
dx = 3x2 − 6x, so dy

dx = 0 when x = 0 and x = 2,
so the stationary points are at (0, a) and (2, a− 4).

So the graph looks like this:

x

y

0

a

(2, a− 4)

There will be one real root for the equation x3 − 3x2 + a = 0 if either the local maximum lies
below the x-axis or if the local minimum lies above the x-axis, as in the case sketched.

The first occurs when a < 0, the second when a− 4 > 0 or equivalently, when a > 4.

So a necessary and sufficient condition is a < 0 or a > 4. This does not, however, appear as
one of the options, so we need to go through them to see which one is sufficient. (Recall from
earlier that sufficient means that if this condition holds, then the equation has exactly one real
root, but not necessarily the other way round.)

A This includes a = 1, which gives more than one real root.

B This includes a = 0, which gives more than one real root (as the minimum lies on the x-axis).

C This includes a = 4, which gives more than one real root (as the maximum lies on the x-axis).

D This includes a = 1 again.

E This is a > 4 or a < −4, both of which are part of the valid range, so this is a sufficient
condition.

F This includes a = 1 again.

G This gives more than one real root.

H a = 3
2 gives more than one real root.

So the correct answer is E.
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Question 20

We can write this out in a grid to see what the current state of knowledge is.

Position
1 2 3 4 5

Tried a b c d e

c d b e a

e a d b c

Possible b c a a b

d e e c d

So positions 1 and 5 contain b and d in some order, while positions 2, 3, 4 contain either cea or
eac in that order.

We certainly do not know the correct password yet.

We could sensibly try bcead as our next attempt. What might we be told in response?

If we have the b and d in the correct order, these 2 letters will be correct, otherwise neither is
correct.

If we have the middle three letters cea in the correct order, then these 3 letters will be correct,
otherwise none of them is.

So:

• if both are correct, the computer will tell us that 5 letters are correct, and we are done;

• if the outer pair are correct but the middle ones are not, the computer will tell us that
2 letters are correct, and we can deduce that the correct password is beacd;

• if the outer pair are wrong but the middle ones are correct, the computer will tell us that
3 letters are correct, and we can deduce that the correct password is dceab;

• if both are wrong, the computer will tell us that 0 letters are correct, and we can deduce
that the correct password is deacb.

Since the four cases give four distinct responses by the computer (0, 2, 3, 5 correct letters),
we can distinguish between them, and therefore deduce the correct password with just this one
further attempt.

The correct answer is B.
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