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1 Given that y =
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, which one of the following is a correct expression for
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2 PQRS is a rectangle.

The coordinates of P and Q are (0, 6) and (1, 8) respectively.

The perpendicular to PQ at Q meets the x-axis at R.

What is the area of PQRS?

A 5
2

B 4
√
10

C 20

D 8
√
10

E 40



3 The first term of a geometric progression is 2
√
3 and the fourth term is 9

4

What is the sum to infinity of this geometric progression?

A −2(2−
√
3)

B 4(2
√
3− 3)

C
16(8

√
3 + 9)

37

D
4(2

√
3− 3)

7

E
4(2

√
3 + 3)

7

F 2(2 +
√
3)

G 4(2
√
3 + 3)



4 The following question appeared in an examination:

Given that tan x =
√
3, find the possible values of sin 2x.

A student gave the following answer:

tan x =
√
3 so x = 60◦ and 2x = 120◦,

therefore sin 2x =

√
3

2
.

Which one of the following statements is correct?

A

√
3

2
is the only possible value, and this is fully supported by the reasoning given

in the student’s answer.

B

√
3

2
is the only possible value, but the reasoning given should consider other

possible values of x for which tan x =
√
3.

C

√
3

2
is the only possible value, but the reasoning given should consider other

possible values of x for which sin 2x =

√
3

2
.

D

√
3

2
is not the only possible value because the reasoning given should have

considered other possible values of x for which tan x =
√
3.

E

√
3

2
is not the only possible value because the reasoning given should have

considered other possible values of x for which sin 2x =

√
3

2
.



5 Consider the following three statements:

1 10p2 + 1 and 10p2 − 1 are both prime when p is an odd prime.

2 Every prime greater than 5 is of the form 6n+ 1 for some integer n.

3 No multiple of 7 greater than 7 is prime.

The result 91 = 7× 13 can be used to provide a counterexample to which of the
above statements?

A none of them

B 1 only

C 2 only

D 3 only

E 1 and 2 only

F 1 and 3 only

G 2 and 3 only

H 1, 2 and 3



6 A sequence u0, u1, u2, . . . is defined as follows:

u0 = 1

un =

∫ 1

0

4xun−1 dx for n � 1

What is the value of u1000?

A 21000

B 41000

C
4

1000!

D
4

1001!

E
21000

1000!

F
41000

1000!

G
21000

1001!

H
41000

1001!



7 The graphs of two functions are shown here:

• y = ax is shown with a solid line, where a is a positive real number

• y = f(x) is shown with a dashed line

Which of the following statements (1, 2, 3, 4) could be true?

1 f(x) = bx for some b > a

2 f(x) = bx for some b < a

3 f(x) = akx for some k > 1

4 f(x) = akx for some k < 1

A 1 only

B 2 only

C 3 only

D 4 only

E 1 and 3 only

F 1 and 4 only

G 2 and 3 only

H 2 and 4 only



8 Which one of the following numbers is smallest in value?

A log2 7

B (2−3 + 2−2)−1

C 2(π/3)

D
1

4
(√

2− 1
)3

E 4 sin2
(π

4

)



9 Consider the following attempt to prove this true theorem:

Theorem: a3 + b3 = c3 has no solutions with a, b and c positive integers.

Attempted proof:

Suppose that there are positive integers a, b and c such that a3 + b3 = c3.

I We have a3 = c3 − b3.

II Hence a3 = (c− b)(c2 + cb+ b2).

III It follows that a = c− b and a2 = c2 + cb+ b2, since a � a2 and
c− b � c2 + cb+ b2.

IV Eliminating a, we have (c− b)2 = c2 + cb+ b2.

V Multiplying out, we have c2 − 2cb+ b2 = c2 + cb+ b2.

VI Hence 3cb = 0 so one of b and c is zero.

But this is a contradiction to the original assumption that all of a, b and c

are positive. It follows that the equation has no solutions.

Comment on this proof by choosing one of the following options:

A The proof is correct

B The proof is incorrect and the first mistake occurs on line I.

C The proof is incorrect and the first mistake occurs on line II.

D The proof is incorrect and the first mistake occurs on line III.

E The proof is incorrect and the first mistake occurs on line IV.

F The proof is incorrect and the first mistake occurs on line V.

G The proof is incorrect and the first mistake occurs on line VI.



10 f(x) is a function defined for all real values of x.

Which one of the following is a sufficient condition for
∫ 3

1
f(x) dx = 0?

A f(2) = 0

B f(1) = f(3) = 0

C f(−x) = −f(x) for all x

D f(x+ 2) = −f(2− x) for all x

E f(x− 2) = −f(2− x) for all x



11 The function f(x) is increasing and f(0) = 0.

The positive constants a and b are such that a < b.

The area of the region enclosed by the curve y = f(x), the x-axis and the lines x = a

and x = b is denoted by R.

The function g(x) is defined by g(x) = f(x) + 2f(b).

Which of the following is an expression for the area enclosed by the curve y = g(x),
the x-axis and the lines x = a and x = b?

A R + (b− a)f(b)

B R + 2(b− a)f(b)

C R + 2f(b)− f(a)

D R + 2f(b)

E R + (f(b))2

F R + (f(b))2 − (f(a))2

G R + 2(f(b)− f(a))f(b)



12 The diagram shows the graphs of y = sin 2x and y = cos 2x for −π
2
< x < π

2

Which one of the following is not true?

A cos 2x < sin 2x < tan x for some real number x with −π
2
< x < π

2

B cos 2x < tan x < sin 2x for some real number x with −π
2
< x < π

2

C sin 2x < cos 2x < tanx for some real number x with −π
2
< x < π

2

D sin 2x < tan x < cos 2x for some real number x with −π
2
< x < π

2

E tan x < sin 2x < cos 2x for some real number x with −π
2
< x < π

2

F tan x < cos 2x < sin 2x for some real number x with −π
2
< x < π

2



13 The positive real numbers a× 10−3, b× 10−2 and c× 10−1 are each in standard form,
and

(a× 10−3) + (b× 10−2) = (c× 10−1).

Which of the following statements (I, II, III, IV) must be true?

I a > 9

II b > 9

III a < c

IV b < c

A I only

B II only

C I and II only

D I and III only

E I and IV only

F II and III only

G II and IV only

H I, II, III and IV



14 The diagram below shows the graph of y = x2 − 2bx+ c. The vertex of this graph is
at the point P .

Which one of the following could be the graph of y = x2 − 2Bx+ c, where B > b?



15 The function f is defined on the positive integers as follows:

f(1) = 5, and for n � 1: f(n+ 1) = 3f(n) + 1 if f(n) is odd

f(n+ 1) = 1
2
f(n) if f(n) is even

The function g is defined on the positive integers as follows:

g(1) = 3, and for n � 1: g(n+ 1) = g(n) + 5 if g(n) is odd

g(n+ 1) = 1
2
g(n) if g(n) is even

What is the value of f(1000)− g(1000)?

A −6

B −5

C 1

D 2

E 4

F 8



16 Consider the following statement:

(∗) If f(x) is an integer for every integer x, then f ′(x) is an integer for
every integer x.

Which one of the following is a counterexample to (∗)?

A f(x) =
x3 + x+ 1

4

B f(x) =
x4 + x2 + x

2

C f(x) =
x4 + x3 + x2 + x

2

D f(x) =
x4 + 2x3 + x2

4



17 A set S of whole numbers is called stapled if and only if for every whole number a
which is in S there exists a prime factor of a which divides at least one other number
in S.

Let T be a set of whole numbers. Which of the following is true if and only if T is
not stapled?

A For every number a which is in T , there is no prime factor of a which
divides every other number in T .

B For every number a which is in T , there is no prime factor of a which
divides at least one other number in T .

C For every number a which is in T , there is a prime factor of a which
does not divide any other number in T .

D For every number a which is in T , there is a prime factor of a which
does not divide at least one other number in T .

E There exists a number a which is in T such that there is no prime factor of a
which divides every other number in T .

F There exists a number a which is in T such that there is no prime factor of a
which divides at least one other number in T .

G There exists a number a which is in T such that there is a prime factor of a
which does not divide any other number in T .

H There exists a number a which is in T such that there is a prime factor of a
which does not divide at least one other number in T .



18 Consider the following problem:

Solve the inequality

(

1

4

)n

<

(

1

32

)10

, where n is a positive integer.

A student produces the following argument:

(

1

4

)n

<

(

1

32

)10

(I)

log 1
2

(

1

4

)n

< log 1
2

(

1

32

)10

(II)

n log 1
2

(

1

4

)

< 10 log 1
2

(

1

32

)

(III)

n <

10 log 1
2
( 1
32
)

log 1
2
(1
4
)

(IV)

n <
10× 5

2
= 25

(V)

1 � n � 24

Which step (if any) in the argument is invalid?

A There are no invalid steps; the argument is correct

B Only step (I) is invalid; the rest are correct

C Only step (II) is invalid; the rest are correct

D Only step (III) is invalid; the rest are correct

E Only step (IV) is invalid; the rest are correct

F Only step (V) is invalid; the rest are correct



19 Which one of the following is a sufficient condition for the equation
x3 − 3x2 + a = 0, where a is a constant, to have exactly one real root?

A a > 0

B a � 0

C a � 4

D a < 4

E |a| > 4

F |a| � 4

G a = 9
4

H |a| = 3
2



20 I have forgotten my 5-character computer password, but I know that it consists of
the letters a, b, c, d, e in some order. When I enter a potential password into the
computer, it tells me exactly how many of the letters are in the correct position.

When I enter abcde, it tells me that none of the letters are in the correct position.
The same happens when I enter cdbea and eadbc.

Using the best strategy, how many further attempts must I make in order to
guarantee that I can deduce the correct password?

A None: I can deduce it immediately

B One

C Two

D Three

E More than three
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