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Notes for Paper 2 of  

The Test of Mathematics for University Admission 
 

You should check the website regularly for updates to these notes. You can tell if 
there have been any updates by looking at the date on the front cover. 

Introduction  
 
The formal side of mathematics - that of theorems and proofs - is a major part of the 
subject and is the main focus of Paper 2.  These notes are intended to be a brief 
introduction to the ideas involved, for the benefit of candidates who have not yet 
met them within their mathematics classes or within their wider mathematical 
reading. 
 
Mathematics, in part, is about working out the relationships between 
(mathematical) statements.  And it is very important that everyone (that is, all 
mathematicians) write and talk about these relationships in the same standard way. 
It is important because mathematics is expressed formally using a rigorous language 
and if different people mean different things when they use the same words, then it 
would be difficult to ensure that everyone is talking about (and agreeing about) the 
very same things. Learning the basics of the rules and terms used by mathematicians 
is essential if you are to be able to understand and contribute to mathematics. These 
notes are written to help introduce you to some of the terms used regularly by 
mathematicians – specifically the terms we have included in Section 2 of the TMUA 
specification. 
 
Before you launch into reading through what we have written, there are a few things 
to keep in mind: 
 

1. This guide is designed to be a brief overview. It is not designed to be an 
extensive textbook, but it should be enough to allow you to get a good 
understanding of the topics in Section 2 of the specification. It should also be 
sufficient to enable you to understand and tackle the questions we will ask in 
the admissions test. 

2. As you read through the guide, make sure you take the time to think through 
everything very carefully. Many of the ideas set out here are quite subtle and 
take some time to grasp, so skimming through everything is certainly not 
enough to ensure you have a good understanding. Rather, you should play 
around with the ideas as you meet them, and try to come up with your own 
examples. In other words, read through things actively with a pencil and 
paper to hand; think carefully about everything, draw your own pictures, 
write out your own examples, and so on.  

3. Another thing you should do is to try to read more widely on the topics set 
out here. The internet has some good explanations and examples of the ideas 
we outline and there are some good books available from libraries that might 
also help.  
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4. A good way to test if you have understood something is to see if you would 
be able to explain the ideas to a friend or a class of students. If you get a 
chance, it is always useful to study the ideas and talk about them with other 
people – again, maybe with others in your maths classes or with your maths 
teacher. 

5. As you work through these notes, make sure you are aware that the language 
used by mathematicians has very precise meanings and these do not always 
coincide with the way words are used in everyday casual contexts. For 
instance, if I am told that I may have “jelly or cake” for pudding, I would 
probably assume it meant I could have jelly or cake but not both. However, in 
mathematics, ‘or’ means ‘one, or the other, or both’, so if I were being 
offered pudding by a mathematician then I could have both jelly and cake if I 
wanted.  

6. Throughout, we have tried to explain the ideas in at least two different ways: 
one using the formal notion of truth tables and one using a more intuitive 
diagrammatic approach. It is worth making sure you understand both 
approaches and how they relate to each other. 

7. There are a few footnotes scattered throughout this guide. Almost all the 
footnotes concern topics and ideas that are outside the scope of the TMUA 
but which some readers might find interesting to explore. You can ignore 
almost all the footnotes if you wish. 

8. Finally, a small note of caution: in this specification we deliberately adopt a 
simple and slightly naïve view of the ideas we are trying to explain rather 
than one that sets out all the deep subtleties that abound in mathematics 
and the philosophy of logic/mathematics. We have been as rigorous as 
necessary to achieve our aims, but you should not take what we have written 
as the perfect and final word on things and we have deliberately avoided 
some issues as they would only complicate matters unnecessarily. For 
instance, some mathematicians or philosophers might take issue with our 
examples of statements or our notion of truth and so on. For what we aim to 
achieve, these issues are not relevant, but that is not to say they aren’t 
interesting.  
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A final note 
 
We have used boxes throughout these notes to help you navigate.  
 
The relevant part of the specification is found in these sorts of boxes: 
 
 
Specification  
 
Examples in these sorts of boxes 
 
Examples 
 
And exercises [we have not given any answers to our exercises] in these sorts of boxes. 
 
Exercises 
 
 
 
We hope to be able to update and, if necessary, correct these notes now and again. 
Look at the date on the front page to see when these notes were last edited. 
 
 
 
 
 
 
  

5



The relevant part of the specification 

SECTION 2 
This section sets out the scope of Paper 2. Paper 2 tests the candidate’s ability to 
think mathematically: the paper will focus on testing the candidate’s ability to 
understand, and construct, mathematical arguments in a variety of contexts. It will 
draw on the mathematical knowledge outlined in SECTION 1 in the test specification. 

The Logic of Arguments 

Arg1  Understand and be able to use mathematical logic in simple situations: 

 The terms true and false; 
 The terms and, or (meaning inclusive or), not; 
 Statements of the form:  

 
if A then B  
A if B  
A only if B 
A if and only if B 
 

 The converse of a statement; 
 The contrapositive of a statement; 
 The relationship between the truth of a statement and its converse 

and its contrapositive. 
  

Note: candidates will not be expected to recognise or use symbolic notation for any 
of these terms, nor will they be expected to complete formal truth tables.  

Arg2 Understand and use the terms necessary and sufficient.  

Arg3  Understand and use the terms for all, for some (meaning for at least one), 
and there exists. 

Arg4  Be able to negate statements that use any of the above terms. 

Mathematical Proof 

Prf1  Follow a proof of the following types, and in simple cases know how to 
construct such a proof: 

 Direct deductive proof (‘Since A, therefore B, therefore C, …, 
therefore Z, which is what we wanted to prove.’); 

 Proof by cases (for example, by considering even and odd cases 
separately); 

 Proof by contradiction; 
 Disproof by counterexample.  

 
Prf2  Deduce implications from given statements.  

Prf3  Make conjectures based on small cases, and then justify these conjectures. 
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Prf4  Rearrange a sequence of statements into the correct order to give a proof for 
a statement. 

Prf5     Problems requiring a sophisticated chain of reasoning to solve. 

Identifying Errors in Proofs 

Err1   Identifying errors in purported proofs.  

Err2  Be aware of common mathematical errors in purported proofs; for example, 
claiming ‘if 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎, then 𝑎𝑎 = 𝑎𝑎’ or assuming ‘if sin𝐴𝐴 = sin𝐵𝐵, then 𝐴𝐴 = 𝐵𝐵’ 
neither of which are valid deductions. 
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MATHEMATICAL LOGIC 

Statements 
 

The Logic of Arguments 
 
Arg1:  The terms true and false 
 
 
At the heart of mathematics, and mathematical logic, is the notion of a statement 
and the relationship between statements. But what can we say about the 
statements we shall meet in mathematics? We can say that they must be either true 
or false, but not both. And it does not matter if we cannot work out whether a 
statement is actually true or false so long as it must be one or the other. We shall 
use this answer to give us a way of understanding roughly what we shall mean by a 
“statement” in these notes. For present purposes, we shall make do with the 
following:  
 

A statement is a sentence which is definitely true or definitely false.  
A statement can never be both true and false. 

 
The principle that a statement can only be either true or false but not both is known 
as the law of the excluded middle. It is fundamental to all the logic and formal 
mathematics that you will meet in these notes. 1  
 
It does not matter if we cannot work out whether a statement is actually true or 
false so long as it must be one or the other. For instance, here is a statement: 
 

The equation 𝑥𝑥3 + 𝑦𝑦2 = 88 has no integer solutions. 
 
This is clearly either true or false but establishing which is not so easy. Here is a 
second [rather famous] example of a sentence that is NOT a statement: 
 
        The only barber in a town shaves each and every man who does not shave himself. 
 
This last sentence is not a statement as it is neither true nor false.2  

 
1 There are systems that do not use the law of the excluded middle: we will not meet these systems in 
these notes. Of course, these systems will have a different notion of what a statement is from the 
ideas we are using here.  
 
2 You do not need to worry at this stage why the sentence is not a statement under our definition; 
that is, you do not need to worry why it is neither true nor false.  If you are interested in the 
statement and its history look up “Russell’s Paradox” or “Barber Paradox”.  Under certain 
deconstructions of the barber paradox sentence, for instance by recasting it along the lines of “there  
exists a  barber such that ….” , the sentence can be considered to be a statement, in fact a statement 
which is false; it is false because it asserts there exist a barber but the condition we place on the 
barber make it impossible for one to exist, so the statement must be false.  We will not use anything 
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Here are some more examples of statements and non-statements : 
 

(1)  “It rained yesterday in Auckland, New Zealand.”  Again, this is a statement, 
as it is either true or false.3 

(2) “Go home!” and “What is your name?”  These are not statements, as it does 
not make sense to say that they are true or false. 

(3)  “If 𝑥𝑥 = 3, then 𝑥𝑥2 = 9.”  This is certainly true, so it is a statement.  We will 
have more to say about “If … then …” statements later. 

(4) “If 𝑥𝑥 = 3, then 𝑥𝑥2 = 4.”  This is certainly false, so it is a statement.  There is 
no requirement for statements to be true! 

(5) “The sum of two odd numbers is an even number.”  This is certainly true, so it 
is a statement. 

 
From now on, we will only be working with statements and relationships between 
statements. We shall try to keep to the convention that we write all our logical 
statements using italics when they are in words and as bold letters when a 
statement is indicated by a letter [e.g. A, B, etc.]. Later we shall use bold for some 
terms to help us see how they fit into sentences. 
 
A little more on statements 
 
Now we know what we mean by a statement, we shall pause to dig a little deeper 
into the sorts of statements you might meet and how we discern their truth or 
falsity.  Here is a statement: 
 

24 is divisible by 2 
 
This statement says something that is true and cannot be false, so it is an example of 
a statement we know to be true just by looking at it. Here is another example: 
 
 

  453653987389875629 is divisible by 987283 
 
This is clearly a statement as it is obviously either true or false. However, whilst it is 
obvious that it is a statement, it is not so obvious whether it is a true statement or a 
false statement. To decide that we would need to do some more [somewhat 
tedious] work.  
 
 

 
other than fairly simple statements in the TMUA, and we will never ask you to work out of a given 
sentence is a statement or not a statement.  
3 There is a whole field on the philosophy on vagueness; for instance, we might ask how many grains 
of sand are needed to make a heap, or how many hairs must we take away from someone’s head to 
make them bald. In this example, we could ask how many drops of water and where these drops must 
fall make it correct to say “it is raining”. We do not worry about such things in the TMUA and we will 
not ask you to judge whether a given sentence is a statement or not, and our statements will not be 
vague.  
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Here is another statement: 
 

The square root of 2 is irrational 
 
This statement is very much like the first statement [24 is divisible by 2] in that it is 
true. However, it is not as obvious as the first statement and some work needs to be 
done to show why it must be true. Later we shall see how we can set out a proof to 
show that this statement is true. 
 
And here is an expression that has the potential to be a statement: 
 

The positive integer 𝑥𝑥 is divisible by 2 
 
Here we don’t know what 𝑥𝑥 is so we cannot say whether the expression is true or 
false as it stands; in other words, whether the expression is true or false is 
conditional on what we are told about 𝑥𝑥 so until we clarify this, we cannot say the 
expression is a statement according to our definition. We could say it is true or false 
if we had some more information about 𝑥𝑥. General expressions like this tend to 
occur in combination with other statements [and, as you will read later, they need to 
be “quantified” in some way – that is, the set of possible 𝑥𝑥 values to which the 
statement applies must be clearly stated] and then what is often important is what 
the combination is saying. For instance, the statement: 
 

if the integer 𝑥𝑥 is divisible by 4 then the integer 𝑥𝑥 is divisible by 2, 
 
is definitely true even though each of the expressions that we have combined to 
make the bigger statement cannot be said to be true or false by themselves.  
 
So, we shall meet three sorts of basic statement in what follows: 
 
 those that are obviously true [or obviously false]; 

 
 those that are true or false, but which need some work to decide which; 

 
 those that are combinations of expressions which are quantified [roughly, 

that means the range of what the 𝑥𝑥 can be is clearly stated] and are then 
either true or false [and these will often require some work to decide which 
they are]. 

 
Later in these notes, we shall spend a lot of time building new statements out of 
basic statements. 
 
In what follows we shall tend to learn how various logical rules work by dealing with 
statements denoted just by letters – such as A or B or P or Q - but then we shall 
apply these rules to statements that have definite truth values. This is a little like 
learning about quadratic equations by studying various things about 
𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑎𝑎 = 0 and then applying what you discover to specific examples.  
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Truth values 
 
In what follows we shall talk a lot about the “truth value” of a statement.4 By “truth 
value” we simply mean whether the statement is true or false. For instance, the 
truth value of the statement 2 is an even number is “true”, and the truth value of the 
statement 2 is an odd number is “false”. 
 
Logically equivalent 
 
We shall often say that two statements are logically equivalent. This will mean that 
the two statements have the same truth values in the same circumstances.5 
 
For instance, the following two statements are logically equivalent: 
 
   Today is Tuesday 
 

Today is the day after Monday 
 
  

 
4 If we were going to be precise, we would have to talk about the truth of falsity of the proposition 
expressed by a statement rather than talking about the truth or falsity of the statement itself. In the 
TMUA we do not worry about such subtleties so we will just use the term “statement” in our 
questions. If you are interested in understanding the difference between a proposition and a 
statement you can look it up – but beware, some of the discussions can get quite technical and, 
sometimes, quite confusing. In simple terms, a proposition is what is expressed by a statement – it is 
like the meaning of the statement – and the proposition expressed is independent of the language in 
which the statement is written. So, for example, the two [famous] statements “snow is white” and 
“Shnee ist weiss” mean the same thing so they express the same proposition even though one is in 
English and one in German.  
5 This is a slightly casual definition, but it will suffice for these notes.  
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Making new statements 
 

Introduction 
 
As we discussed briefly above, mathematics is in part about seeing how the truth or 
falsity of one statement relates to the truth or falsity of other statements. To help us 
begin to understand these relationships we shall learn how to build new (compound) 
statements by formally combining other statements, and we shall learn how the 
truth or falsity of the combinations depends on the truth or falsity of the statements 
that we use to build them. 
 
Before we begin to unpack compound statements in detail, here are some examples 
of formal combinations of statements with the statements written in italics and the 
formal ‘combining terms’ written in bold: 
 

21 is divisible by 3 and 21 is divisible by 6 [A and B] 
 

21 is divisible by 3 or 21 is divisible by 6 [A or B] 
 

21 is not divisible by 6 [not B] 
 

if 21 is divisible by 3 then 21 is divisible by 6 [if A then B] 
 

21 is divisible by 3 if 21 is divisible by 6 [A if B] 
 

21 is divisible by 3 only if 21 is divisible by 6 [A only if B] 
 

21 is divisible by 3 if and only if 21 is divisible by 6 [A if and only if B]  
 

Exercise A 

1. Decide which of the above combinations you think must be true and which must be 
false. Can you explain your answers?  

2. What, if anything, happens to your answers if you replace 21 by 𝒙𝒙 in each of the 
statements [assume 𝒙𝒙 can be drawn from the set of real numbers]?   

3. When you replace 21 by x, are all the resulting expressions still statements ? 

4. What happens to your answer to 2 if you change the set of 𝒙𝒙 values to which the 
statements apply?  
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The negation of a statement: the term not 
 

The Logic of Arguments 
 
Arg1:  The term not 
 
 
 
In this section we shall look at using not with statements. The formal use of not in 
logic is very similar to the everyday use of the term ‘not’ so you will already have a 
good intuitive grasp of how not works. 
 
Formally, if we have a statement A then we can construct another statement from it, 
which we shall write as not A, the negation of A. For instance: 
 

A: 21 is divisible by 3 
not A: not [21 is divisible by 3] 
  

 and we tend to write not [21 is divisible by 3] as 21 is not divisible by 3 
 
You should note that in formal logic,  not applies only to what occurs immediately 
after it unless there are brackets: so not A or B means (not A) or B and, as you will 
find out later, this is different from not (A or B). 
 
Here we shall learn how to understand the negation of a statement and the 
relationship between the truth value of a statement and its negation. 
 
Let us start with a simple example of negation: 

Example 
 
Let A be the statement:   
 

29 is a prime number 
 
then not A is the statement:  
 

it is not the case that 29 is a prime number 
 
which we can write more succinctly as:  29 is not a prime number. 
 
So we have: 
 

A: 29 is a prime number 
 

not A: 29 is not a prime number 
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Here it is obvious that A is true and not A is false, and this is a general property of 
not: it changes true statements into false ones, and it changes false statements to 
true ones. This rule will always work because, recall, we take statements to be 
always either true or false [the law of the excluded middle] by definition. 
 
We can display the way not works for general statements in one of two ways [in fact, 
there are other ways but we shall stick to just two ways here]. We can either draw 
out a ‘truth table’ or we can draw a picture. Let’s start with the truth table: 
 
 

A not A 
T F 
F T 

   
Here T is shorthand for “true” and F is shorthand for “false”. The first row in the 
table tells us that whenever A is true then not A is false, while the second row in the 
table tells us that whenever A is false then not A is true.  
 
We can also think about A and not A using diagrams. The diagrams we will use 
derive from set theory – they are like Venn diagrams – and you might have met them 
when studying probability. The diagrams we use are less formal than truth tables 
and have a slightly different emphasis – they tend to be useful mostly when talking 
about general statements, although they can also be useful when thinking through 
examples with statements that have definite truth values. Here the diagrams are 
primarily intended to help you think about things. 
 
In the diagrams that follow you should think of the area inside the A circle as 
representing all the cases where A is true. And that means you should think of the 
area outside the circle as representing all the cases when A is false; that is, all the 
cases where not A is true.  We shall use the convention that each shaded area in a 
diagram shows where one particular statement is true: A is true inside the A circle 
and not A is true outside the A circle. We shall write what area is shaded [and so 
what area is true] under each diagram. Here are a couple of examples: 
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Notice that the “A” written near the circle labels the circle and its inside. 
 
If you know some set theory, then you can think of the circle A as representing the 
set where A is true, so then not A is like the complement of that set. Similarly, if you 
know about events in probability, then you can think of A as an event and not A as 
the complementary event A’ – the event that A does not occur. 
 
 

 

Exercise B 

1. If A is true, what can you say about not not A? What about not not not A? 

2. Can you work out a general rule for the truth value of not not not….not A [𝒎𝒎 lots 
of not] when A is true, and when A is false? 
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Combining statements: using and 
 

The Logic of Arguments 
 
Arg1:  The term and 
 
 
 
In this section we shall look at the logical term and. The word “and” appears all over 
the place in everyday English. However, the use of “and” in logic is very precise - 
perhaps more so than in colloquial English - so you will need to be a little careful 
when you use the logical version of “and”. 
 
We begin by setting out a simple example of a compound statement A and B: 
 
Example  
 

A: 21 is divisible by 3 
B: all humans are mammals 
 

 The compound statement is therefore: 
 

A and B: 21 is divisible by 3 and all humans are mammals 
 
 
In general, the statement A and B is true when both of A and B are true, and it is 
false when at least one of the statements is false.  We could write this up as a table6: 
 

A B A and B 
T T T 
T F F 
F T F 
F F F 

 
Recall, here we have written T as shorthand for “true” and F for “false”.  The table 
shows that for A and B to be true both A and B must be true.   
 
 
 
 
 

 
6 These, very useful, tables are called “truth tables”. They were introduced by the philosopher Ludwig 
Wittgenstein in his book Tractatus Logico-Philosophicus. We do not use truth tables officially in the 
TMUA [they are not part of the test’s official specification] so there will not be questions that depend 
on using them or knowing about them. Nevertheless, truth tables are very useful whilst you learn 
logic, and we recommend that you make sure you are familiar with them. 
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Let’s look at another example:  
 

Consider the statement: the monarch is a man and the Prince of Wales is 
called William.  Each of the parts  the monarch is a man, and the Prince of 
Wales is called Willliam is true, so the whole statement is true.  (At least this 
is the case in the UK at the time of writing these notes.) 

 
We can also think of the statement A and B using our diagrams. Remember that 
everything inside the A circle is where A is true and everything inside the B circle is 
where B is true. A and B is true when both A and B are true. So, A and B is 
represented by the overlap of the A circle and the B circle: 
 
 

 
 
 
If you know set theory, you can think of A and B as being like A ∩ B [A intersect B] in 
diagrams. Similarly, in the language of probability, you can think of A and B as the 
event that both A and B occur (also written as A ∩ B). 
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Combining statements: using or 

The Logic of Arguments 
 
Arg1:  The term or 
 
 
The next way we might want to combine two statements is with the word “or”.  
There are two possible meanings of this word.  In general usage, “A or B” is often 
understood to mean “either A is true, or B is true, but not both”.  For instance, in 
general usage we might hear things like “you can have jam roly-poly or a mille feuille 
for pudding” and we would usually take that to mean we could have one or the 
other pudding but not both. This type of “or” is sometimes called an “exclusive or” 
[this is often written as XOR, but we will not be using XOR at all in these notes or in 
the TMUA].  However, mathematicians take the word “or” to mean “inclusive or”, so 
that A or B means “either A is true, or B is true, or both are true”.  Over the years, it 
has been found to be much more convenient to use this version of “or” rather than 
the “exclusive or”.  When mathematicians want to mean exclusive or, they are 
explicit about it, and write something like “either A is true, or B is true, but not 
both”.  When they just write “or” in a mathematical statement, they always mean 
“inclusive or”.  This is the meaning of “or” - which we shall write in bold as or - that 
will be used in the admission test. 
 
We can again write a truth table to show this: 
 

A B A or B 
T T T 
T F T 
F T T 
F F F 

 
For example, the statement the monarch is a man or the Prince of Wales is called 
William is a  [mathematically] true statement, even though it sounds a little strange 
colloquially. 
 
We can look at or using our diagrams. A or B is true when we are either inside A or 
inside B or inside both. So, A or B is represented by the shaded region in the 
following diagram: 
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In set theory terms, A or B is like A ∪ B [A union B] and in probability terms, it is like 
the event that either A or B or both occur, also written as A ∪ B. 
 
 
Exercise C 
 

1. Complete the truth table for A and (B and C): 
 

A B C B and C A and (B and C) 
T T T T T 
T T F F F 
T F T F  
T F F F  
F T T   
F T F   
F F T   
F F F   

 
 

2. Now draw up the truth table for (A and B) and C. 
 
 What do you notice? What do you think you can conclude about 
 A and B and C?   
 

3. Revisit question 2 above but this time use diagrams to justify your 
conclusion. 

 
4. Draw up a truth table for each of the following: 

 
A or (B or C)  

 
(A or B) or C 
 
What do you notice? What do you think you can conclude about A or B or C? 
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5. Revisit question 4 but this time use diagrams to justify your conclusions. 

 
6. Draw up truth tables for each of the following: 

 
A or (B and C) 

 
(A or B) and (A or C) 

 
What do you notice? Can you justify your conclusions using diagrams? 
 
[We say that or distributes over and] 

 
7. Can you find an equivalent statement for A and (B or C)? 
 
8. How do your results for questions 6 and 7 compare with the arithmetic 

operations of multiplication and addition? 
 

9. Consider A and B or C. Is this statement ambiguous or not? Justify your 
answer. 

 
10. Draw up truth tables for: 

 
not (A or B) 

 
(not A) and (not B) 

 
What do you notice? Can you justify your conclusions using diagrams? 
 
 

11. Can you come up with an alternative [logically equivalent] way of writing not 
(A and B)? Justify your alternative statement using both truth tables and 
diagrams.  
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Revisiting logical equivalence  
 
Recall, earlier we stated: 
 
“We shall often say that two statements are logically equivalent. This will mean that 
the two statements have the same truth values in the same circumstances.” 
 
From the above Exercise C you should have noticed that A or (B and C) and (A or B) 
and (A or C) have the very same truth tables – each expression is true or is false in 
the same way once you are given the truth values of A, B and C. When two 
expressions match up in their truth tables in this way, we say that they are “logically 
equivalent”. And so, identity of truth tables is another way to think about logical 
equivalence. 
We can also use logical equivalence to understand A or B or C and A and B and C. 
We take it that the statement A or B or C is logically equivalent to either (A or B) or C   
or to A or (B or C).  We can do the same thing for A and B and C.  We can justify this 
as there is no ambiguity when we break A or B or C into statements that are of the 
form “…or…” ; that is we can take the statement  A or B or C  and interpret it as 
either saying   (A or B) or C  or as saying A or (B or C); in both cases we get the same 
answers for the same truth values of A, B and C.  And, we have to work this way – 
i.e. breaking the statements down using brackets - because we have only defined 
“or” in situations of the form … or …   
 
The same applies for A and B and C. 
 
You should also note that A or B and B or A are logically equivalent [can you explain 
why?] and also A and B and B and A are logically equivalent [again, can you explain 
why ?]  
 
You should start to build up a  good grasp of when combinations of statement are 
logically equivalent:  when can you swap the order of statements [for instance, A or 
B vs B or A], when can you remove brackets, when can’t you remove brackets,  how 
do you deal with brackets using or and and .   
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Negating compound statements 
 

The Logic of Arguments 
 
Arg4:  Be able to negate statements that use any of the above terms. 
 
 
 
Negating more complicated statements can be tricky, and truth tables can often 
help.  For example, what is the negation of A and B?  It is not (A and B), but that use 
of brackets looks a little odd, and it would be tricky to write this as a sentence in 
English!  We can write a truth table for this situation: 
 

A B A and B not (A and B) 
T T T F 
T F F T 
F T F T 
F F F T 

 
 
Which table have we seen earlier which has three trues and one false in the final 
column?  It was the or table, so it seems that not (A and B) is actually an or 
statement.  To get false in an or statement, we need both parts to be false.  If we 
consider (not A) or (not B), both of the parts are false in just the first row, giving the 
same resulting table: 
 
 

A B A and B not (A and B) not A not B (not A) or (not B) 
T T T F F F F 
T F F T F T T 
F T F T T F T 
F F F T T T T 

 
 
So not (A and B) is the same as (not A) or (not B). And by “the same” we mean they 
have the same truth values for any given truth values of A and B; recall that 
sometimes we say that two statements that have the same truth tables are logically 
equivalent, or just equivalent.    
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Example 
 
As an example, the negation of  
 
          𝑥𝑥 is even and 𝑥𝑥 is prime  
 
is 
 
         𝑥𝑥 is not even or 𝑥𝑥 is not prime,  
 
or alternatively, replacing not even by odd:7 
 
          𝑥𝑥 is odd or 𝑥𝑥 is not prime. 
 
What about negating A or B? Let’s look at the truth table: 
 

A B A or B not (A or B) 
T T T F 
T F T F 
F T T F 
F F F T 

 
Which table have we seen earlier which has one true (T) and three falses (F) in the 
final column?  It was the and table, so it looks like not (A or B) is actually an and 
statement.  If we consider (not A) and (not B), we get exactly the same table: 
 

A B A or  B not (A or B) not A not B (not A) and (not B) 
T T T F F F F 
T F T F F T F 
F T T F T F F 
F F F T T T T 

 
So not (A or B) is the same as (not A) and (not B). And, again, by “same” we mean 
they have the same truth values for any given truth values of A and B; they are 
logically equivalent. 
 

 
7 Here we are assuming 𝑥𝑥 is an integer but we haven’t explicitly mentioned it. Later we will look at 
quantification which deals with this sort of issue formally. 
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Exercise D 

1. Look through a mathematics textbook to find some mathematical statements. 
What are their negations? 

2. Look through some text in English (for example, on a website, in a newspaper or in 
a book) to find some statements.  What are the negations of the statements you 
have found ? 
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STATEMENTS WITH ‘IF’ 
 
We now turn to look at the part of the specification that involves the word “if”.  
 
 
Language and implication 
 
Before we start to look at how we might understand the formal ideas behind 
statements that involve “if” in various ways, we shall step sideways to examine how 
we deal with “if” in everyday English as this will help us when we come to look at the 
way “if” statements are unpacked in logic. 
 
Here is a collection of statements: 
 

i. If it is Sunday, then the church bells ring 
ii. The church bells ring if it is Sunday 

iii. The church bells ring only if it is Sunday 
iv. It is Sunday if the church bells ring 
v. It is Sunday only if the church bells ring 

vi. The church bells ring if and only if it is Sunday 

Before we start to look at each statement in turn, take a moment to think through 
what you would understand by each one. Ask yourself  
 

what you would know if the statement is true and it is Sunday;  
 

ask yourself what you would know if the statement is true and the bells ring;  
 

ask yourself what you can claim about the bells if the statement is true and it 
is not Sunday;  

 
and ask yourself what you can claim about the day if the statement is true 
and the bells don’t ring.   

 
Let’s start to look at each statement in turn to see if we can work out what it is 
telling us and what it is not telling us. In each case we shall assume the statement is 
true. We start with: 
 

i. If it is Sunday, then the church bells ring 
 

First, we ask what does it tell us if we know it is Sunday? It tells us that the church 
bells will ring. What, then does it tell us about the church bells if it is not Sunday? It 
tells us nothing; and it tells us nothing because it doesn’t tell us about whether the 
church bells will ring on Wednesday or on Tuesday and so on.  
 
What can we say if we know statement i is true and we hear the church bells? Can 
we say it must be Sunday? The answer is we cannot say it is Sunday. We cannot say 
it is Sunday as the bells might ring on Tuesday or Wednesday so hearing the bells 
ring is, according to statement i, not enough to tell us what the day is. Finally, what 
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can we determine about the day if the bells do NOT ring? The answer is that we can 
tell it is NOT Sunday. We can tell it is not Sunday because, if it were Sunday then the 
bells definitely would ring. 
 
 
 
We can summarise these findings as follows: 
 
Statement: i.  If it is Sunday, then the church bells ring 

What we know  What we can conclude if i is true 
It is Sunday The bells ring 
It is not Sunday Nothing 
The bells ring Nothing 
The bells do not ring It is not Sunday 

 
We can repeat this process for each of the other sentences. We shall summarise the 
results in a series of tables but take some time to study each one to check it matches 
any conclusions you have drawn. Some of the examples take some time to think 
through, particularly statement iii: 
 
Statement: ii.  The church bells ring if it is Sunday 

What we know  What we can conclude if ii is true 
It is Sunday The bells ring 
It is not Sunday Nothing 
The bells ring Nothing 
The bells do not ring It is not Sunday 

 
Here we note that the tables for each of statements i and ii are identical. The two 
statements are logically equivalent. That is to say, we take it that If it is Sunday, then 
the church bells ring says the very same thing as The church bells ring if it is Sunday. 
We shall say some more about this below when we start to look at “if” statements 
formally.  

 
Statement: iii.  The church bells ring only if it is Sunday 

What we know  What we can conclude if iii is true 
It is Sunday Nothing 
It is not Sunday The church bells do not ring 
The bells ring It is Sunday 
The bells do not ring Nothing 
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Statement: iv.  It is Sunday if the church bells ring 

What we know  What we can conclude if iv is true 
It is Sunday Nothing 
It is not Sunday The church bells do not ring 
The bells ring It is Sunday 
The bells do not ring Nothing 

 
 
Statement: v. It is Sunday only if the church bells ring 

What we know  What we can conclude if v is true 
It is Sunday The church bells ring 
It is not Sunday Nothing 
The bells ring Nothing 
The bells do not ring It is not Sunday 

 
 
Statement: vi.  The church bells ring if and only if it is Sunday 

What we know  What we can conclude if vi is true 
It is Sunday The church bells ring 
It is not Sunday The church bells do not ring 
The bells ring It is Sunday 
The bells do not ring It is not Sunday 

 
 
 
We will return to these more formally in the following sections   
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Combining statements: if A then B  
 

The Logic of Arguments 
 
Arg1:  Statements of the form: if A then B 
 
 
 
So far we have learnt how to use the formal terms not, and and or. In this section we 
shall look at statements of the form “if…then…”. In the previous section we looked 
informally at this sort of statement when we examined if it is Sunday, then the 
church bells ring and other similar statements.  However, we need to be very careful 
as there aren’t definitive rules as to how to interpret these sorts of statements in 
everyday English, whereas in logic the meaning is precise.   
 
For example, suppose that someone says the statement if it is raining then I will use 
my umbrella. In everyday English, this sentence would be understood with one of 
the following two meanings: 
 

•  If it is raining, I will use my umbrella, while if it is not raining, then I will not 
use my umbrella. 

• If it is raining, I will use my umbrella, while it says nothing at all about what 
will happen if it is not raining. 

 
When writing mathematical statements, though, we cannot allow such a significant 
ambiguity.  That is why it is important to understand exactly what mathematicians 
mean when they say if A then B. 
 
In logic, the statement if A then B means that if A is true, then B must also be true.  
But what if A is false?  What can we say then?  In everyday English, different 
meanings might be understood depending upon the exact sentence and context.  
But in mathematical logic, this statement has a precise meaning, namely: 
 
 If A is true, then B is true. 
 If A is false, then B may be either true or false.  
 
Thus, the only way that if A then B can be false is if A is true and B is false. 
 
Since if A then B is a statement, we can write a truth table for it: 
 

A B if A then B 
T T T 
T F F 
F T T 
F F T 
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We can look at if A then B in a diagram by shading all the areas that make if A then B 
true: 

 

Now let us look again at statements i and ii above: 
 

i. If it is Sunday, then the church bells ring 
ii. The church bells ring if it is Sunday 

We can see from the tables we drew up that both statements seem to mean the 
same thing in everyday English. Using this allows us to introduce another way of 
writing if…then…, statements just using if. We do this by defining if A then B to be 
logically equivalent to B if A. 

Finally, here are some examples of mathematical statements of the form if A then B: 
 

• if 𝑥𝑥 = 4, then 𝑥𝑥2 = 8.  This is a false statement, because when 𝑥𝑥 = 4 is true, 
𝑥𝑥2 = 8 is false.   

• if 0 = 1, then 2 + 2 = 5.  This is a true statement, since 0 = 1 is false.  It is 
true even though 2 + 2 = 5 is false.  This may seem a little strange at first 
sight!  

• if 𝑎𝑎 and 𝑎𝑎 are odd integers, then 𝑎𝑎 + 𝑎𝑎 is an even integer.  This is a true 
statement, as whenever “𝑎𝑎 and 𝑎𝑎 are odd integers” is true, so is “𝑎𝑎 + 𝑎𝑎 is an 
even integer”. 

• The standard proofs that √2 is irrational begin as follows: “if √2 is rational, 
then we can write √2 = 𝑎𝑎/𝑎𝑎, where 𝑎𝑎 and 𝑎𝑎 are integers with 𝑎𝑎 ≠ 0.”  This is 
a true statement, for the only way it could be false is if “√2 is rational” is 
true, but “we can write √2 = 𝑎𝑎/𝑎𝑎, where 𝑎𝑎 and 𝑎𝑎 are integers with 𝑎𝑎 ≠ 0” is 
false. 
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Exercise E 

1. Notice that the truth table for if A then B has three Trues and one False in the final 
column.  Can you guess how if A then B might be written in terms of some or all of 
and, or, and not?  

2. Once you have written out your guesses for if A then B using and, or and not, can 
you justify that they have the same truth table as if A then B?   

3. Can you justify your answer using diagrams? 

4. What can you say about the truth of: 

if A then (A or B)     

 if A then (A and B)       
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Equivalent statement for if A then B using not, or, and and 
 

The Logic of Arguments 
 
Arg1:  Understand and be able to use mathematical logic in simple situations. 
 
 
In the exercise above [Exercise E]  we asked you to work out if you could express if A 
then B in an equivalent form using the logical terms not, or and and.  In this section 
we shall explore this a little further as it will be useful for us later. We will take two 
approaches: first, using truth tables; and , second, using “Venn diagrams”. 
 
Let us start by recalling the truth table for if A then B: 
 

A B if A then B 
T T T 
T F F 
F T T 
F F T 

 
 
The final column in this table is similar to the final column of an or table. This 
suggests that if A then B is equivalent to some statement involving or, but the 
difficulty is to find the correct or statement using statement A and statement B.  We 
can get a clue from looking at the row in the table where if A then B is false: the only 
situation where an or statement can be false is when both the statements that make 
the or statement are false. Looking at the row in the table where if A then B is false, 
we can see that A is true and B is false so if we could replace the T under A with an F 
in this row, we would have the correct line in an or table. The way to achieve this is 
to replace A by not A. This all suggests that if A then B is equivalent to (not A) or B. 
Let us construct the truth table for not A or B 8 and see if it gives us the same table 
as for if A then B: 
 

A B not A not A or B 
T T F T 
T F F F 
F T T T 
F F T T 

 
We can see that the two tables do give the same results, so we have shown that 
 

 if A then B is equivalent to not A or B. 
 
 

 
8 Recall, earlier we mentioned that not only ever applies to what immediately follows it; so here, 
instead of writing (not A) or B we can write not A or B as there is no ambiguity.  
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 You can also see this by looking at the “Venn diagram” for if A then B :  
 

 
 

In set theory notation, the shaded area can be written as 𝐀𝐀� ∪ 𝐁𝐁 [that is “A-
complement union with B”] which translates to logic as (not A) or B as expected. 
 
 

Exercise F 

1. Show, using truth tables, that not (A and not B) is equivalent to not A or B. 

2. Show, using truth tables, that if A then B is equivalent to not (A and not B). 

3. Find [logically] equivalent statements for each of the following:  

a. if 𝒙𝒙 > 𝟏𝟏 then 𝒙𝒙𝟐𝟐 > 𝟏𝟏 

         b. if two triangles are similar then they have the same interior angles 

c. if a triangle obeys Pythagoras’ theorem then it has a right angle 
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Combining statements:  A only if B 

The Logic of Arguments 
 
Arg1:  Statements of the form:  A only if B 
 
 
Above we met statements of the form if A then B (or equivalently B if A); now we 
are going to look at statements of the form A only if B.    
 
It is hard to untangle the everyday use of the term “only if” from the formal logical 
use of only if. Earlier we asked you to work out what you thought the statement it is 
Sunday only if the church bells ring told you. There you might have noticed that this 
statement had the same table of conclusions as the statement if it is Sunday, then 
the church bells ring. This motivates what is the case in formal logic:  statements of 
the form A only if B are logically equivalent to statements of the form if A then B. 
 
Now we shall look at a second example, the true statement.  

 if 𝑥𝑥 = 3, then 𝑥𝑥2 = 9  
 

This can be written as 
 

 𝑥𝑥 = 3 only if 𝑥𝑥2 = 9   
 

This makes some intuitive sense, for if 𝑥𝑥2 ≠ 9, then we cannot have 𝑥𝑥 = 3.   

We can write out the formal truth table for A only if B: 
 

A B A only if B 
T T T 
T F F 
F T T 
F F T 
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Let’s draw a diagram for A only if B to show where it is true:  
 

 

 
 
 
A [very] useful tip is to replace the statement  A only if B by if A then B whenever 
the former statement occurs.  
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Combining statements: A if and only if B 
 

The Logic of Arguments 
 
Arg1:  Statements of the form:  A if and only if B 
 
 
 
Statements of the form A if and only if B are very common in mathematics so we 
shall spend some time unpicking them. First, it is worth noting that A if and only if B 
is often abbreviated to A iff B where ‘iff’ is usually read as ‘if and only if’ [we don’t 
use the abbreviation iff in the TMUA but you should know it as it is very common] 
Second, the reason iff statements are important is because when they are true they 
assert that A and B are really saying the same thing - albeit often in different ways – 
in that they are both true in all the same circumstances and false in all the same 
circumstances.  In mathematics it is a very useful thing to know when two 
statements say the same thing in different ways – some might even claim that 
mathematics is, in essence,  about demonstrating that different statements say the 
same thing in different ways. Before we take iff statements to pieces and get a feel 
for how they show two statements are equivalent, let’s write out an obvious 
example: 
 

an integer is even if and only if it is not odd 
 
When unpicking what A if and only if B means it is useful to grasp that it is 
shorthand for the following: 
 

(A if B) and (A only if B) 
 
And we know from earlier that  
 

A if B is the same as [logically equivalent to] if B then A 
 
and  
 

A only if B is the same as [logically equivalent to] if A then B 
 
Now we know this, we can use all the rules we have learnt above to construct a truth 
table to work out when this statement is true and when it is false: 
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A B A if B 
if B then A 

A only if B 
if A then B 

  
(if B then A) and (if A then B) 

A if and only if B 
A iff B 

 
T T T T T 
T F T F F 
F T F T F 
F F T T T 

 
From this we can see that A iff B is true when A and B are both true or when A and B 
are both false. That is to say that A iff B is true only when A and B always say the 
same thing – they are true together and false together. This is why proving A iff B is 
so important for mathematics as it is a way of telling us that two statements that 
might appear different are really saying the same thing from a mathematical point of 
view. For instance: 
 
             ⌊𝑥𝑥⌋ = ⌈𝑥𝑥⌉ if and only if 𝑥𝑥 is an integer 
 
where ⌊𝑥𝑥⌋ is the greatest integer less than or equal to 𝑥𝑥 and ⌈𝑥𝑥⌉ is the smallest 
integer greater than or equal to 𝑥𝑥. And here is another example: 
 

an integer is divisible by 9 if and only if the sum of its digits is divisible by 9 
 
How might we illustrate A iff B on a diagram?  We can approach achieving an answer 
in two ways: either we can just work it out using diagrams for if A then B and for if B 
then A together with the rules for and; or we can just shade the areas on a diagram 
where A and B are true simultaneously and also where A and B are false 
simultaneously. Here is the result: 
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Exercise G 
 
Draw the diagrams for if A then B [A only if B] and for if B then A [A if B] and then 
use these two diagrams and the rules for and with diagrams to work out the diagram 
for A iff B. 
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Swapping A and B 
 

The Logic of Arguments 
 
Arg1:  Understand and be able to use mathematical logic in simple situations. 
 
 
One thing we have mentioned but not examined much so far is what happens to 
each of the logical statements when we swap A with B. In this section we shall briefly 
examine this. 
 
First, we look at A and B. The question we want to ask is whether A and B is the 
same as B and A; and by ‘the same’ we mean logically equivalent, that A and B has 
the same truth value as B and A for any given truth values of A and of B.  The simple 
answer is ‘yes’ and this should be obvious from the way we defined A and B: our 
definition was independent of the order of A and B.   

Exercise H 
 
Examine the truth tables for A and B and convince yourself that A and B and B and A 
are the same. Look at the diagram we drew for A and B and work out what the 
diagram for B and A would look like. 
 
 
Next, we look at A or B. The question we want to ask is whether A or B is the same 
as B or A; and, again, by ‘the same’ we mean that A or B has the same truth value as 
B or A for any given truth values of A and of B.  The simple answer is ‘yes’, and again 
this should be obvious from the way we defined A or B: our definition was 
independent of the order of A or B.   
 
What about if A then B? Does if A then B have the same truth table as if B then A? 
The simple answer is ‘no’ and we demonstrate this either by looking at the 
respective truth tables or drawing the respective diagrams. Let’s look at the truth 
table: 
 

A B if A then B if B then A 
T T T T 
T F F T 
F T T F 
F F T T 

 
 
From this we can see that the last two columns are different, so the two statements 
are not the same. 
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Let’s look at if A then B and if B then A in a little more detail. It’s a common error 
when students are first learning logic to think that one statement is the same [has 
the same truth profile] as the other. For instance, we might start with the statement: 
 

 if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 
 

and it is then tempting to say that this is the same as: 
 

if 𝑎𝑎2 < 𝑎𝑎2 then 0 < 𝑎𝑎 < 𝑎𝑎 
 

but a little thought shows that they are not equivalent statements. The first is always 
true no matter what real values of 𝑎𝑎 and 𝑎𝑎 we substitute, whilst the second is false 
as there are some values of 𝑎𝑎 and 𝑎𝑎 which make it false. For instance, if we set 𝑎𝑎 =
 1 and 𝑎𝑎 = −2 then 𝑎𝑎2 < 𝑎𝑎2 but it’s not the case that 0 < 𝑎𝑎 < 𝑎𝑎.   
 
Here it is worth pausing for a moment to examine how we have dealt with our 
example. What do we do when we look at a statement such as if 0 < 𝑎𝑎 < 𝑎𝑎 then 
𝑎𝑎2 < 𝑎𝑎2 ? First, we realise that what we have written, namely  if 0 < 𝑎𝑎 < 𝑎𝑎 then 
𝑎𝑎2 < 𝑎𝑎2 is shorthand for something a little more precise – we ignored the extra bits 
above to avoid overloading you with information. What extra information have we 
ignored here? Well, really the statement if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2should tell us 
what values of a and b it applies to; we ought to write: 
 

for all real values of 𝑎𝑎 and 𝑎𝑎, if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 
 
Later we shall say a little more about phrases such as “for all”.  
 
With the statement now written out in full, we can return to dealing with the 
statement: we ask ourselves what happens to the statement when the left-hand side 
is true and when it is false – do we always find the whole statement is true no 
matter what allowed values of 𝑎𝑎 and 𝑎𝑎 we substitute into the statement? In the case 
of  if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 we see that whenever we have values of 𝑎𝑎 and 𝑎𝑎 that 
obey [make true] 0 < 𝑎𝑎 < 𝑎𝑎 then those same values of 𝑎𝑎 and 𝑎𝑎 must also make the 
right-hand side – the expression 𝑎𝑎2 < 𝑎𝑎2 – true. So, to say it again, the statement for 
all real values of a and b, if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 is always true. 
 
What about the second statement, if 𝑎𝑎2 < 𝑎𝑎2 then 0 < 𝑎𝑎 < 𝑎𝑎? Again, we shall take 
the same approach [we shall assume we have the phrase for all real values of 𝑎𝑎 and 
𝑎𝑎 lurking about]. We ask if there are any values of 𝑎𝑎 and 𝑎𝑎 that make the left-hand 
side, the 𝑎𝑎2 < 𝑎𝑎2, true and the right-hand side, 0 < 𝑎𝑎 < 𝑎𝑎,  false. The answer is that 
there are, and we gave such an example above [𝑎𝑎 =  1 and 𝑎𝑎 = −2]. So, for the 
statement if 𝑎𝑎2  < 𝑎𝑎2 then 0 < 𝑎𝑎 < 𝑎𝑎 we can find values of 𝑎𝑎 and 𝑎𝑎 that make the 
left-hand side true and the right-hand side false. This means that the statement is 
false. 
  
Now we can return to our main theme: we now consider what happens when we 
swap A with B in the statement A only if B. Again, we can look at the truth table or 
diagrams to decide whether A only if B is the same as B only if A: 
 

39



A B A only if B B only if A 
T T T T 
T F F T 
F T T F 
F F T T 

 
It is clear from the truth table that the two statements are not the same – they are 
not logically equivalent. 

Exercise I 
 

1. Draw diagrams for A only if B and for B only if A to convince yourself they 
have different truth profiles. 

2. Look at diagrams for all of the following together: 
 

A or B 
A and B 
if A then B 
A only if B 

 
Examine the symmetry of the diagrams. What do you notice about the cases 
that remain unchanged when you swap A and B and what do you notice 
about the symmetry of those cases that have different truth tables when you 
swap A and B?  

 
3. Using your answer to 2, what can you say about A iff B and B iff A, are they 

the same - do they have the same truth tables for a given A and B? [Do this 
before reading the next section.] 

 

 
Finally, we shall look at the statement A iff B and compare it with the statement B iff 
A. Recall that when we first met A iff B we said it was a statement that appears a lot 
in mathematics because it tells us that A and B are saying the same thing – when A is 
true then B is true and vice versa.  We can examine whether A iff B and B iff A say 
the same thing by looking at truth tables: 
 
 
 

A B A iff B B iff A 
T T T T 
T F F F 
F T F F 
F F T T 
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As an aside, we can also look at how we construct the diagram of A iff B from (if A 
then B) and (if B then A). 
 
First, recall the diagrams of if A then B [A only if B] and of if B then A [A if B]: 
 
 

 
 
 
 
 
 
 

 
 
 
 
Then recall that and means we shade only those areas that are shaded on both 
diagrams. When we do this, we get: 
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And we note that the diagram is symmetric in that it does not matter which circle we 
label A and which we label B. Symmetry of diagrams is one way of spotting when the 
A and the B can be swapped in a statement without changing the [logical] meaning 
of the statement. 
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Summary  

Statements 
 

• Can be either true or false but not both. 
• Can be combined to make “bigger statements”. 

 
Same/logically equivalent 
 

• Two statements are the same – logically equivalent – when they have 
identical truth tables. Or more informally: they are true and false in the same 
way.  

 
not A 
 

• Turns false statements into true statements and vice versa. 
• Applies only to what immediately follows it unless brackets are used. 
• not not A is logically equivalent to A  
• Truth table: 

A not A 
T F 
F T 

 
A and B 
 

• True only when both A and B are true, otherwise false. 
• Symmetry:  A and B is logically equivalent to B and A 
• (A and B) and C is logically equivalent to A and (B and C) and is also logically 

equivalent to A and B and  C 
• Truth table: 

A B A and B 
T T T 
T F F 
F T F 
F F F 

A or B 
 

• True when either A or B or both are true – i.e., true when at least one of the 
two statements A, B, is true. 

• Symmetry:  A or B is logically equivalent to B or A 
• (A or B) or C is logically equivalent to A or (B or C) and is also logically 

equivalent to A or B or C 
• Truth table: 

A B A or B 
T T T 
T F T 
F T T 
F F F 
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Negating compound statements: 
 

• not (A and B) is logically equivalent to not A or not B. 
 

• not (A or B) is logically equivalent to not A and not B. 
 
 

if A then B 
 

• Also written as B if A or as A only if B 
• Not symmetric: if A then B is not the same as if B then A 
• Truth table: 

A B If A then B 
T T T 
T F F 
F T T 
F F T 

 
 
A if and only if B 
 

• Also written as A iff B 
• Symmetric: A iff B is logically equivalent to B iff A 
• Equivalent to (if B then A) and (if A then B) 
• Equivalent to  (A if B) and (A only if B) 
• Full truth table: 

 
A B A if B 

if B then A 
A only if B 
if A then B 

(if B then A) and (if A then B) 
A if and only if B 

A iff B 
 

T T T T T 
T F T F F 
F T F T F 
F F T T T 
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CONVERSES AND CONTRAPOSITIVES 

Converse 

The Logic of Arguments 
 
Arg1:   The converse of a statement  

The relationship between the truth of a statement and its converse 
 

 
Some of the statements we have met above have what is known as a converse. We 
shall start this section by giving you the converses of a number of statements. Have a 
look at each example and try to work out how you think we form the converse of a 
statement. Here are the examples: 
 

Statement Converse 
if a and b are odd, then ab is odd if ab is odd,  then a and b are odd 
if a and b are even, then ab is even if ab is even,  then a and b are even 
if a is even, then 2a is even if 2a is even, then a is even 
if a is odd, then 2a is odd if 2a is odd, then a is odd 
if a and b are even, then a b+  is even if a b+ is even, then a and b are even 
if a and b are odd, then a b+   is odd if a b+  is odd, then a and b are odd 

 
Now we shall set out a table of the converses that are relevant to this specification: 
 

Statement  Converse 
if A then B if B then A 
A only if B B only if A 

 
A if B B if A 
A iff B B iff A 

 
From this table you can see that the converse of a statement is constructed by 
“swapping” A with B. We have already examined the truth tables of each of the 
above statements and their converses in earlier sections and we concluded: 
 
 if A then B and its converse if B then A do NOT say the same thing: they are 

NOT equivalent statements 
 
 A only if B and its converse B only if A do NOT say the same thing:  they are 

NOT equivalent statements 
 

 A if B and its converse, B if A do NOT say the same thing:  they are NOT 
equivalent statements 

 
 A iff B and its converse B iff A do say the same thing: they are equivalent 

statements  

45



 
 
We can rewrite the table to include logically equivalent statements: 
 

Statement Converse 
if A then B  
A only if B  
B if A 

if B then A  
B only if A  
A if B 

A iff B  
B iff A 

B iff A  
A iff B 

 

Exercise J 
 

1. Look back at all the statements we have used as examples so far and write 
out their converses. How many of the converses are true?  
 

2. What is the converse of the converse of a statement? 
 

3. What is the converse of each of the following: 
 

a. if two triangles are congruent then they have the same area 
b. if two triangles are similar then they have the same internal angles 
c. if I am human then I am mortal [a classic example from philosophy] 
d. if I am a bachelor then I am an unmarried man9  

 
4. Which of the converses you have written out for question 3 are true? 

 
  

 
9 This is another example from philosophy:  if you are interested in exploring further, look up analytic 
and synthetic statements; and if you want to explore much more broadly, you could also look at a 
priori and a posteriori knowledge, as well as the notion of necessity from a philosophical perspective]. 
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Contrapositive 

The Logic of Arguments 
 
Arg1:   The contrapositive of a statement 
   The relationship between the truth of a statement and its contrapositive 
 
 
We have learnt that a statement and its converse are not the same logically. A 
natural follow-up question to ask is what statements are there that are logically the 
same as those we have met – the answer is found in the contrapositive of a 
statement. We shall start by listing the contrapositives that are relevant to this 
specification, and then we shall examine them in a little more detail: 
 

Statement Contrapositive 
if A then B if not B then not A 
A only if B not B only if not A 

A iff B not B iff not A 
 
In each of these, A and B are both swapped and negated, whereas in the converse, 
they were simply swapped.  (There is also a third possibility, called the inverse of a 
statement, where A and B are both negated, but not swapped.  We will not consider 
inverses further here, and we do not test them in the TMUA.) 
 
We examine the truth tables for each of these in turn: 
 

A B if A then B not B not A if not B then not A 
T T T F F T 
T F F T F F 
F T T F T T 
F F T T T T 

 
From this we can see that if A then B and its contrapositive, if not B then not A, are 
logically equivalent statements. 
 
And also: 
 

A B A only if B not B not A not B only if not A 
T T T F F T 
T F F T F F 
F T T F T T 
F F T T T T 

 
From this we can see that A only if B and its contrapositive, not B only if not A, are 
logically equivalent statements. 
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Here are a few practical examples of statements and their contrapositives – for each 
one check you can see why they are equivalent statements and look carefully at how 
not is used in some of the examples: 
 

if 𝑥𝑥 = 2 then 𝑥𝑥2 = 4 ,    if 𝑥𝑥2 ≠  4 then 𝑥𝑥 ≠ 2 
 

if 𝑥𝑥2 <  4 then 𝑥𝑥 < 2 ,  if 𝑥𝑥 ≥ 2 then 𝑥𝑥2  ≥ 4 
 

if two triangles have the same angles as each other then they are similar 
 
if two triangles are not similar, then they do not have the same angles as 
each other 

 
 

Exercise K 
 
 

1. Look at all the conditional statements that we have set out so far [i.e. all 
those involving ‘if’ in one way or another; that is: if… then…, …iff…, …only 
if…] and work out what their contrapositives say. Can you see, in each case, 
why the contrapositive is logically equivalent to the original statement?  

2. What is the contrapositive of the converse of the statement if A then B? Are 
if A then B and the contrapositive of its converse logically equivalent? 

3. What is the converse of the contrapositive of the statement if A then B? Are 
if A then B and the converse of the contrapositive logically equivalent? 

4. What is the contrapositive of if 𝑎𝑎 and 𝑎𝑎 are odd, then 𝑎𝑎𝑎𝑎 is odd? 
5. Why is it a mistake to write the contrapositive of if 𝑎𝑎 and 𝑎𝑎 are odd, then 𝑎𝑎𝑎𝑎 

is odd as if 𝑎𝑎𝑎𝑎 is not odd then 𝑎𝑎 and 𝑎𝑎 are not odd?  
 
 
 
Before you read on, make sure you have completed Exercise K questions 4 and 5 
above. 
 
It is important to take care when working out the contrapositive of complicated 
statements. Consider the statement (about integers) if 𝑎𝑎 and 𝑎𝑎 are odd, then 𝑎𝑎𝑎𝑎 is 
odd. This statement is true. Its contrapositive is therefore also true. But what is it?  It 
is very tempting to insert a careless ‘not’ to produce if 𝑎𝑎𝑎𝑎 is not odd then 𝑎𝑎 and 𝑎𝑎 are 
not odd, and from this it is a short step to if 𝑎𝑎𝑎𝑎 is even then 𝑎𝑎 and 𝑎𝑎 are even. However, 
this is false [why?], and it is not the contrapositive. The correct form (in English that 
makes sense and is not strangulated) is: 
 

if 𝑎𝑎𝑎𝑎 is even then 𝑎𝑎 and 𝑎𝑎 are not both odd 
or 

if 𝑎𝑎𝑎𝑎 is even then at least one of 𝑎𝑎 and 𝑎𝑎 is even 
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The reason for this mistake is, of course, that negation is not as simple as it seems – 
here we need to use not (A and B) is logically equivalent to not A or not B. 
 
Summary: converses and contrapositives 
 
Often TMUA questions will give you a statement and ask about the truth values of the 
various related statement, such as the converse and contrapositive. You should 
remember that a statement and its contrapositive are logically equivalent, whereas 
this is not necessarily the case for a statement and its converse. To determine the 
truth or falsity of the converse of statement usually takes some extra effort.  
 
We recommend you have a look through past TMUA papers and examine every 
question where the terms converse or contrapositive arise.  You can look at the model 
answers too if you are not sure how to answer any question you identify.  
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AN OFF-SPECIFICATION ASIDE 

Symbols 
 
Not in the specification and not required for the test. 

We have now finished looking at the main areas of logic listed in the specification; 
we have still to look at the notions of necessity, sufficiency and the meaning of some 
statements such as for all, for some and there exists and we shall return to these 
below. In this section we shall briefly look at how what we have learnt above is 
expressed using symbols. We are adding this because it is useful to know how we 
can write everything we have met using symbols. You should note, however, that the 
TMUA will NOT test your ability to use these symbols and these symbols will NOT 
appear in any of the questions that we set – so, if you want, it is fine to skip this 
section.  

Here is a table of common symbols used in formal logic: 
 

What we have met Alternative/equivalent 
expression  

Formal symbol  

A and B B and A A ∧ B 
A&B 

A or B B or A A ∨ B 
not A  ¬A 

[sometimes ~A 
or even 𝐀𝐀�] 

if A then B A only if B 
B if A 

A ⟹ B 
B ⟸ A 

if B then A B only if A 
A if B 

B ⟹ A 
A ⟸ B 

A if and only if B A iff B 
B iff A  

A ⟺ B 

 
 

Exercise L 

1. Revisit some [or all] of the statements we have met so far in these notes and 
rewrite them using the symbols above.  

2. If you have met electronic circuits, you will probably have met variants on some of 
these such as A xor B,  A nand B and so on. We will not look at these here but, if you 
have met them, it would be a useful exercise to examine how they fit with everything 
we have looked at. 
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Necessary and Sufficient 

The Logic of Arguments 
 
Arg2:   Understand and use the terms necessary and sufficient. 
 
 
The terms necessary and sufficient turn up a lot in mathematics. You might, for 
instance, have seen things like: 
 

For two triangles to be congruent it is sufficient that they have two equal 
sides and the enclosed angle in common. 

 
Or:  
 

For two triangles to be similar it is necessary, but not sufficient, that they 
have an angle in common. 

 
Or you might have seen parts of questions that say something like: 
 

…by considering (𝑥𝑥2  +  𝑔𝑔𝑥𝑥 +  ℎ)(𝑥𝑥 −  𝑘𝑘), or otherwise, show  

that 𝑔𝑔2  >  4ℎ is a sufficient condition but not a necessary condition  

for the inequality  

 
(𝑔𝑔 −  𝑘𝑘)2  >  3(ℎ −  𝑔𝑔𝑘𝑘) 

to hold 
 
 [STEP I 2001 question 3] 
 
 
In this section, we shall explain how mathematicians use the term necessary and the 
term sufficient. We need to explain them as they have subtly different features from 
their everyday uses; the good thing is we have met the notions already, we just 
didn’t refer to them as necessity and sufficiency. 
 
A is sufficient for B means exactly the same as if A then B. Usually we think of this as 
follows:  A is sufficient for B if we can say that when A is true then we are 
guaranteed that B is true as well. And further, we need to note that if A is sufficient 
for B and we find that A is actually false, we cannot say whether B is true or false - as 
there might be cases where B is true and A is false.  
 
The best way to think about A is sufficient for B is to think of it as saying that when 
we know A is true then we are guaranteed that B is true [and also remember that we 
cannot say anything about B when we are told A is false] 
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Here is an example: 
 

𝑥𝑥 is an odd natural number greater than 1 and not divisible by any natural 
number other than 1 and itself is sufficient for 𝑥𝑥 to be prime. 

   
This is true because  
 

if 𝑥𝑥 is an odd natural number greater than 1 and not divisible by any natural 
number other than 1 and itself then 𝑥𝑥 is prime. 

 
is true. It is useful to note here that there is a case where 𝑥𝑥 is an odd natural number 
greater than 1 and not divisible by any number other than 1 and itself is false but 𝑥𝑥 is 
prime is true: i.e., the case 𝑥𝑥 = 2. This is fine, though, as it does not make the 
statement itself false [check the truth table for if A then B] and, what is more, it 
illustrates the point we made above: there we said ‘there might be cases where B is 
true and A is false’ and here we have a case of this when 𝑥𝑥 = 2. 
 
Now necessity: in simple terms we say that A is necessary for B when if B then A, or 
equivalently A if B, is true. Usually, we think of this as follows:  A is necessary for B if 
we can say that when B is true then we are guaranteed that A is true as well and if A 
is false then B must be false as well. And further, as before, we need to note that if A 
is necessary for B and we find that B is actually false, we cannot say whether A is 
true or false: there might be cases where A is true and B is false.   
 
Here is an example of necessity: 
 

two triangles having one side of the same length is necessary for the two 
triangles to be congruent. 

 
We can see that this necessity condition is quite weak. It tells us something about 
congruence but not enough to guarantee that two triangles are congruent – two 
triangles each having one side of the same length is not sufficient to guarantee they 
are congruent!   
 
We can now look at the term necessary and sufficient. From what we have written 
so far, it should be clear that if we write A is necessary and sufficient for B, then we 
mean A iff B. In other words, we mean that when A is true B is true, and vice versa, 
and when A is false then B is false, and vice versa.  
 
Here is an example: 
 

two triangles having the same three angles is a necessary and sufficient 
condition for the two triangles to be similar. 

 
So, to summarise: 
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 if you are asked for a sufficient condition for B to be true then you need to 
look for a condition that guarantees to make B true. 

 
 if you are asked for a necessary condition for B to be true then you need to 

look for something that must be the case for B to be true but might not be 
enough by itself to guarantee that B is true. 
 

And if you are asked to find necessary and sufficient conditions for B then you need 
to look for something that guarantees the truth of B in all circumstances: that is, 
when your condition is true then B is true, and vice versa, and when your condition 
is false then B is false, and vice versa.  
 
We can also think about necessity and sufficiency using a diagram. This diagram is 
slightly different from the diagrams we used earlier – although there are some 
connections between them – so it is best to look at these diagrams in isolation and 
treat them as a way of helping you grasp the notions of necessity and sufficiency.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the diagram, we can see that A is sufficient for B; that is to say, if we are inside 
the A circle then we must be inside the B circle too. Note that whilst A is sufficient 
for B, there are cases where we can be inside the B circle but outside the A circle; 
that is to say that even if A is false there is still the possibility that B is true – you 
should reconcile this with your formal understanding of A is sufficient for B, i.e.  with 
if A then B which is also written as A ⟹ B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 
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Now let’s look at necessity: 
 
Here is a second diagram with A and B swapped: 
 
 
 
 

 
 
 
 
 
 
 
 
Another way of looking at this second diagram is to think about necessity: the 
diagram shows us that A is necessary for B; that is to say, we must be inside the A 
circle in order to have any chance of being inside the B circle. What is important to 
note here though is that being inside the A circle is not enough [i.e. is not sufficient] 
by itself to guarantee we are also inside the B circle. So, we need A in order for B to 
be true, but A alone is not enough to guarantee B is true – that is what necessity is 
all about. 
 
Again, reconcile this with your formal understanding of A is necessary for B, A ⟸ B 
 
Finally, what happens if A is necessary and sufficient for B?  If we look at our 
diagrams, we see that the A and the B circle need to be covering each other; in other 
words, the A circle and the B circle are the very same circle and that means they are 
really logically equivalent. So, A is necessary and sufficient for B is another way of 
saying A iff B or even A ⟺ B 
 
Here is a summary of the notions of necessity and sufficiency: 
 

A is sufficient for B A only if B,  if A then B  
A is necessary for B A if B,  if B then A 
A is necessary and sufficient for B A iff B 

 
A is sufficient for B A ⟹ B 
A is necessary for B A ⟸ B 
A is necessary and sufficient for B A ⟺ B 

 
Almost every TMUA paper will have some questions based on the terms necessary 
or sufficient. You should look through all the past papers and check you know how to 
deal with them and to check your understanding of the meaning of the two terms. 
 
 
 

B 
A 
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You should make sure you understand what each of the following terms means as 
they occur a lot in TMUA questions; use past paper questions and the model 
answers we have produced to help you: 
 
necessary 
 
sufficient 
 
necessary and sufficient 
 
necessary but not sufficient 
 
sufficient but not necessary 
 
not necessary and not sufficient [this is usually written as neither necessary nor 
sufficient, but we don’t write that in the TMUA as we want to be very clear] 
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Quantifiers 

The quantifiers for all, for some, and there exists. 

The Logic of Arguments 
 
Arg3:   Understand and use the terms for all, for some (meaning for at least one), 

and there exists. 
 
 
Earlier, we mentioned that when we have statements with an 𝑥𝑥 [or an 𝑎𝑎 or 𝑎𝑎 etc], 
then we clarify what we mean by the 𝑥𝑥 that we have written. We say that we need 
to set out exactly the scope of the 𝑥𝑥 in some way; and when we set out exactly what 
𝑥𝑥 values we are talking about, we say that we “quantify” the 𝑥𝑥 value. In this section, 
we explore this notion of quantification by looking at the two10 different ways of 
quantifying an 𝑥𝑥 in a statement  
 
Here is an example from earlier where we added some information to a statement 
to tell us exactly what values we were considering. Instead of  
 

if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 
 

we wrote: 
 

for all real values of 𝑎𝑎 and 𝑎𝑎, if 0 < 𝑎𝑎 < 𝑎𝑎 then 𝑎𝑎2 < 𝑎𝑎2 
 
 
In this section we explore phrases that quantify 𝑥𝑥 [or a or b etc] such as for all, for 
some and there exists in more detail. We will start this exploration by looking at a  
number of statements and discussing them a little. 
 
Consider the following statement:  
 

for all real 𝑥𝑥, 𝑥𝑥2 ≥ 0 
 
This is clearly a true statement but what is important to notice for this section is the 
phrase “for all”. This phrase tells us what our statement applies to – in this case it 
tells us that the statement, 𝑥𝑥2 ≥ 0, applies to all real numbers. But why do we need 
to specify what a statement refers to? The reason is that if we don’t there might be 
scope for confusion or ambiguity and mathematics doesn’t like confusion or 
ambiguity. Here is another example: 
 
Consider the statement  
 
                                          𝑥𝑥2 is an integer 
 

 
10 In more advanced treatments on the foundations of logic, it is common to use only one quantifier 
and derive any others from it; we do not take this approach in the TMUA.  
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Now this is sometimes true and sometimes false, for instance it is true when 𝑥𝑥 = 7 
and it is false when 𝑥𝑥 = 0.5. However, if we write: 
 

for all integers 𝑥𝑥, 𝑥𝑥2 is an integer 
 

it is true, but if we write  
 

for all real 𝑥𝑥, 𝑥𝑥2  is an integer 
 
it is not true because there are some real 𝑥𝑥 values for which 𝑥𝑥2 is not an integer, for 
instance 𝑥𝑥 = 0.5 
 
Two things are  important to note here: 
 

1. Mathematicians like to say what their statements apply to and sometimes 
they do this using phrases like “for all”. 

2. Often a statement can be true only in certain situations and mathematicians 
can use phrases like “for all….” to make it clear what circumstances they are 
considering. 

 
Sometimes, in place of “for all” we can write “for every” or “for each” so we can take 
a statement such as  
 

for all integers 𝑥𝑥, 𝑥𝑥2 is an integer 
 
and rewrite it as: 
 

     for every integer 𝑥𝑥, 𝑥𝑥2 is an integer 
 
or  

             for each integer 𝑥𝑥, 𝑥𝑥2 is an integer 
 
Mathematicians also like to assert that something [some mathematical thing, like a 
number or a function etc.] can be found to make something true, in these cases they 
tend to use the term “there exists” [usually along with the phrase ‘such that’]. For 
instance: 
 

                    there exists a real 𝑥𝑥 such that 𝑥𝑥2 = 4 
 

                           there exists an 𝑥𝑥 such that 𝑥𝑥2  is an integer 
 
                    there exists a real 𝑥𝑥 for which 𝑥𝑥2 = 4 
 

Sometimes we might find that a “there exists” statement is actually false; for 
instance: 
 

             there exists a real integer 𝑥𝑥 such that 𝑥𝑥2 = −4 
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Sometimes, in place of there exists we can write for some or for at least one so we 
can take a statement such as: 
 

            there exists a real 𝑥𝑥 such that 𝑥𝑥2 = 4 
 
and write it as: 
 
                                     for some real 𝑥𝑥, 𝑥𝑥2 = 4 
or 
 
                                   for at least one real 𝑥𝑥, 𝑥𝑥2 = 4 
 
Thinking informally about for all and there exists:   
 

When you see the phrase for all 𝑥𝑥 … you can think of it as telling you that you 
can pick ANY 𝑥𝑥 you want from the given set of 𝑥𝑥′s and then the 
corresponding statement will be true. The phrase is telling you that every 
value of 𝑥𝑥 makes the statement true. 

 
And when you see the phrase there exists an 𝑥𝑥 such that… you can think of it 
as issuing a challenge: you are challenged to FIND an 𝑥𝑥 that makes the 
statement that the phrase is applied to true. The phrase is telling you that 
there is at least one 𝑥𝑥 that makes the statement true.   

 
Be aware that there exists does not mean that there must also be values for which 
the corresponding statement is false.  For example, the statement 
 
 there exists a real 𝑥𝑥 for which 𝑥𝑥2 > −2 
 
is true, because 𝑥𝑥2 > −2 when 𝑥𝑥 = 0.  It does not matter that 𝑥𝑥2 > −2 for every 
real 𝑥𝑥. 
 
Exercise M 
 

1. Which of the following are true and which are false? 
 

i. for every real 𝑥𝑥, 𝑥𝑥2 is rational 
ii. there exists a real 𝑥𝑥 such that 𝑥𝑥2  is rational 

iii. for every real 𝑥𝑥, 𝑥𝑥2 > 𝑥𝑥 
iv. there exists a real 𝑥𝑥 such that 𝑥𝑥2 > 𝑥𝑥 
v. for every real 𝑥𝑥, 𝑥𝑥3 > 0 

vi. there exists a real 𝑥𝑥 such that 𝑥𝑥3 > 0 
vii. for every real 𝑥𝑥 and 𝑦𝑦, 𝑥𝑥2 + 𝑦𝑦2 > 2𝑥𝑥𝑦𝑦 

viii. there exists real 𝑥𝑥 and 𝑦𝑦 such that 𝑥𝑥2 + 𝑦𝑦2 > 2𝑥𝑥𝑦𝑦 
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Combining the two phrases together 

The Logic of Arguments 
 
Arg3:   Understand and use the terms for all, for some (meaning for at least one), 

and there exists 
 
 
You will often encounter statements in university mathematics that include both the 
phrase for all and the phrase there exists. When this happens the order in which 
they appear is very important. Here are a couple of statements to illustrate how 
important the order is: 
 
S1:   for all positive real 𝑥𝑥 there exists a real 𝑦𝑦 such that  𝑦𝑦2 = 𝑥𝑥 
 
S2:   there exists a real 𝑦𝑦 such that for all positive real 𝑥𝑥,  𝑦𝑦2 = 𝑥𝑥 
 
A little thought will show you that S1 is true but S2 is false. Let us explore why: 
 
S1 is telling us that if we pick any positive 𝑥𝑥 value then we can always find a 𝑦𝑦 value 
for that 𝑥𝑥 value that obeys the equation 𝑦𝑦2 = 𝑥𝑥. In other words, we pick any positive 
𝑥𝑥 value first and then look about to see if we can find a 𝑦𝑦 value to go with our 
chosen 𝑥𝑥 value – and we always can find such a 𝑦𝑦 value so S1 is true. It is useful to 
note that different choices of 𝑥𝑥 value have different 𝑦𝑦 values associated with them 
and this is allowed by S1. 
 
S2 is telling us that we can find one value of 𝑦𝑦 such that 𝑦𝑦2 = 𝑥𝑥 no matter what 𝑥𝑥 
value we choose from the positive reals. This is clearly not true. Here the difference 
is that we are challenged to pick a 𝑦𝑦 value so that our chosen 𝑦𝑦 value then satisfies 
the test set by the second bit of the statement – we need to test that for our chosen 
𝑦𝑦 value it is true that 𝑦𝑦2 = 𝑥𝑥 for all positive 𝑥𝑥 values. In other words, to make the 
statement true we need to find at least one 𝑦𝑦 value such that this one 𝑦𝑦 value obeys 
all the following [and many more!]: 𝑦𝑦2 = 1, 𝑦𝑦2 = 2, 𝑦𝑦2 = 3, 𝑦𝑦2 = 𝜋𝜋, … 
 
What we take from these two examples is that the order of the phrases for all and 
there exists is important when they occur together and we have to respect the order 
in which they appear.11 Only once we have dealt with the first phrase can we then 
deal with the second phrase in light of what the first phrase has told us. 
 
And a final note: sometimes mathematicians write the phrase “for all real 𝑥𝑥” (or 
similar) at the end of a statement instead of at the start, to emphasise the 
embedded statement, for example: 
 

                    𝑥𝑥2 ≥ 0 for all real 𝑥𝑥 

 
11 There are alternative logics [which do NOT appear in the TMUA!] where the 
ordering of the quantifiers is dealt with differently; look up “independence friendly 
logic”.  
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This is fine for one occurrence of for all, but if it is mixed with for some or there 
exists in the same statement, then confusion will result, so it is very unwise to do 
this. 
 
 

Exercise N 
 

1. Which of the following are true and which are false: 
 

i. for all real 𝑥𝑥 there exists a real 𝑦𝑦 such that:  𝑥𝑥 > 𝑦𝑦 
ii. for all real 𝑥𝑥 there exists a real 𝑦𝑦 such that:  𝑦𝑦 > 𝑥𝑥  
iii. for all real 𝑦𝑦 there exists a real 𝑥𝑥 such that:  𝑥𝑥 > 𝑦𝑦  
iv. for all real 𝑦𝑦 there exists a real 𝑥𝑥 such that:  𝑦𝑦 > 𝑥𝑥  
v. there exists a real 𝑥𝑥 such that for all real 𝑦𝑦:  𝑥𝑥 > 𝑦𝑦 
vi. there exists a real 𝑥𝑥 such that for all real 𝑦𝑦:  𝑦𝑦 > 𝑥𝑥 
vii. there exists a real 𝑦𝑦 such that for all real 𝑥𝑥:  𝑥𝑥 > 𝑦𝑦 
viii. there exists a real 𝑦𝑦 such that for all real 𝑥𝑥:  𝑦𝑦 > 𝑥𝑥 
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Negating for all and there exists 

The Logic of Arguments 
 
Arg3:   Understand and use the terms for all, for some (meaning for at least one), 

and there exists. 
 
 
Earlier we saw what happens when we negated [that is, put not in front of] 
statements such as A and B, A or B and so on. A natural question to ask is what 
happens when we use not together with for all and there exists. In this section we 
shall explore this. Before we begin we should mention again that we tend not just to 
write “not” in front of statements but translate them into more palatable English: 
here we shall say “it is not the case that…” in place of not by itself. 
 
Let’s start by looking at a few examples: 
 

S1:  for all real 𝑥𝑥, 𝑥𝑥2  > 6 
 

N1: it is not the case that for all real 𝑥𝑥, 𝑥𝑥2  > 6 
 

S2: there exists a real 𝑥𝑥 such that 𝑥𝑥2 < 0 
 

N2: it is not the case that there exists a real 𝑥𝑥 such that 𝑥𝑥2 < 0 
 
What about the truth of these statements? S1 is false, so N1 is true; S2 is false so N2 
is true. 
 
What we want to do is see if we can translate N1 and N2 in some way into a simpler 
statement. We start with N1: what does N1 say? It says that it’s not true that 𝑥𝑥2 > 6 
for all real 𝑥𝑥 values; in other words, it is telling is that there must be some 𝑥𝑥 value for 
which it is not true that 𝑥𝑥2 > 6. And in this case, we can easily find such an 𝑥𝑥, for 
instance 𝑥𝑥 = 2.  So we now have two equivalent ways of writing out N1: 
 

N1old: It is not the case that for all real 𝑥𝑥, 𝑥𝑥2 > 6 
 
N1new: there exists a real 𝑥𝑥 such that 𝑥𝑥2 > 6 is not the case  

 
Let’s look more carefully at these two versions of N1 to see if we can understand 
their general structure: 
 

N1old has the structure:  not-(for all) statement 
 

N1new has the structure:  (there exists) not-statement 
 
We can actually go further with N1new, by translating “𝑥𝑥2 > 6 is not the case” into a 
simpler statement.  If 𝑥𝑥2 > 6 is not the case, then we must have 𝑥𝑥2 ≤ 6, so N1 
finally becomes 
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N1newest: there exists a real 𝑥𝑥 such that 𝑥𝑥2 ≤ 6 

 
Now let’s look at N2: What does N2 say? It says that no matter how hard we look we 
will never find a real 𝑥𝑥 value that makes 𝑥𝑥2 < 0 true. In other words, for every real 𝑥𝑥 
value the statement 𝑥𝑥2 < 0 must be false; or, we could say that for every real 𝑥𝑥 
value it is not the case that 𝑥𝑥2 < 0. So, we now have two equivalent ways of writing 
out N2: 
 

N2old:  it is not the case that there exists a real 𝑥𝑥 such that 𝑥𝑥2 < 0 
 

N2new:  for all real 𝑥𝑥 it is not the case that 𝑥𝑥2 < 0 
 
Let’s look more carefully at these two versions of N2 to see if we can understand 
their general structure: 
 
     N2old has the structure: not-(there exists) statement 
 

N2new has the structure: (for all) not-statement 
 
Again, we can simplify our N2new statement one further step to get 
 

N2newest:  for all real 𝑥𝑥, 𝑥𝑥2 ≥ 0 
 
In summary, we have the following: 
 

not-(for all statement)  is equivalent to  (there exists) not-statement 
 

not-(there exists statement) is equivalent to (for all) not-statement 
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Symbols 
 
Not in the specification and not required for the test. 
 
Whilst you are not expected to know, and won’t be tested on, the symbols used for 
the phrases for all and there exists, it is useful to know what they are and see how 
the above examples can be translated using these symbols. In this section we shall 
look, briefly, at the symbolism. In addition, it is worth noting that mathematicians 
call the phrases for all and there exists quantifiers: for all is known as the universal 
quantifier (because it sets the universe of things that you are allowed to consider), 
and there exists is known as the existential quantifier for obvious reasons.  
 
Now some symbolism: 

for all is written as an upside-down A:  ∀ 

there exists is written as a backwards E:  ∃   
 
These symbols are often combined with set theory and other notation: 

∈ to mean “belongs to”  

: [a colon] to mean “such that” 

¬ to mean not 
 
We can now translate some of the statements we looked at in previous sections 
using this notation: 
 

N1old: it is not the case that for all real 𝑥𝑥, 𝑥𝑥2  > 6 

N1old translated:  ¬(∀𝑥𝑥 ∈ ℝ, 𝑥𝑥2 > 6) 

N1new: there exists a real 𝑥𝑥 such that 𝑥𝑥2 > 6 is not the case  

N1new translated: ∃𝑥𝑥 ∈ ℝ: ¬(𝑥𝑥2 > 6) 

N2old: it is not the case that there exists a real 𝑥𝑥 such that 𝑥𝑥2 < 0 

N2old translated:  ¬(∃𝑥𝑥 ∈ ℝ: (𝑥𝑥2 < 0)) 

N2new: for all real 𝑥𝑥 it is not the case that 𝑥𝑥2 < 0 

N2new translated: ∀𝑥𝑥 ∈ ℝ, ¬(𝑥𝑥2 < 0) 
 
Looking at these we can see that in general we have: 
 

 ¬∀  is the same as ∃¬ ; and ¬∃ is the same as ∀¬ 
 
And it is always worth recalling from the discussions we had above that ∀…∃  is not 
generally the same as ∃…∀ 
 
And a final note: If a mathematician writes, as mentioned above, something like 
“𝑥𝑥2 ≥ 0 for all real 𝑥𝑥”, it would still usually be translated into symbols as ∀𝑥𝑥 ∈
ℝ, 𝑥𝑥2 ≥ 0 with the ∀ at the beginning. 
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PROOF 
 
Mathematical Proof 
 
Prf1  Follow a proof of the following types, and in simple cases know how to 

construct such a proof 
 

Introduction 
 
Proof is central to mathematics; but what is proof, and why is it so important? 
 
In simple terms a proof is an explanation of why a statement is true. More 
specifically the proof is a rigorous and convincing explanation of why some 
statement is true: rigorous in that it must obey mathematical and logical rules 
throughout; and convincing in that it should be clear enough to convince other 
mathematicians of its correctness.   Proofs can be one line long, or they can be very 
complicated and lengthy, or they can be anything in between. In this section we look 
at a selection of specific methods of proof; more specifically, we will concentrate on: 
 
 Simple deductive proofs 
 Proof by contradiction 
 Proof by contrapositive 
 Disproof by counterexample 
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Direct deductive proofs 
 
Mathematical Proof 
 
Prf1  Direct deductive proof (‘Since A, therefore B, therefore C,…, therefore Z, 

which is what we wanted to prove’) 
 
 

Simple deductive proofs tend to ask us to prove if A then B type statements. The 
proof begins with a simple statement A that we take to be true and then proceeds 
through a sequence of smallish, and usually obvious, steps  [lots of uses of if…then…]  
each one following from the previous ones. The proof finishes when it reaches the 
statement B which is to be proved. Here is an example: 
 
Let us prove:  
 
 𝐢𝐢𝐢𝐢 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑥𝑥𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑𝑦𝑦 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 9 
 
We shall start with 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 and keep using if…then… statements until we 
reach 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 9. Each if…then… carries the truth of the first statement 
along with it [because we are using logically valid steps] until we reach the final 
statement, the conclusion. The conclusion must be true because we will have shown 
that its truth follows directly from the truth of the first statement in the sequence. 
 
Proof: 
 
𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 

 
𝑖𝑖𝑖𝑖 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥 = 3𝑒𝑒,𝑤𝑤ℎ𝑑𝑑𝑒𝑒𝑑𝑑 𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑒𝑒 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 

 
𝑖𝑖𝑖𝑖 𝑥𝑥 = 3𝑒𝑒 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥2 = 9𝑒𝑒2 

 
𝑖𝑖𝑖𝑖 𝑥𝑥2 = 9𝑒𝑒2 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥2ℎ𝑎𝑎𝑖𝑖 9 𝑎𝑎𝑖𝑖 𝑎𝑎 𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑒𝑒 

 
𝑖𝑖𝑖𝑖 𝑥𝑥2 ℎ𝑎𝑎𝑖𝑖 9 𝑎𝑎𝑖𝑖  𝑎𝑎 𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑒𝑒 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 9 𝑎𝑎𝑒𝑒𝑑𝑑 𝑖𝑖𝑓𝑓 𝑤𝑤𝑑𝑑 𝑎𝑎𝑎𝑎𝑒𝑒 𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑 𝑒𝑒ℎ𝑎𝑎𝑒𝑒 
 

𝐢𝐢𝐢𝐢 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 9 
  

 We can rewrite this proof more succinctly using some formal notation; remember 
another way of stating if A then B is by saying A implies B, and in symbols, this is 
written as A ⇒ B. We can rewrite our proof as follows12: 
 
𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 
⇒ 𝑥𝑥 = 3𝑒𝑒,𝑤𝑤ℎ𝑑𝑑𝑒𝑒𝑑𝑑 𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑒𝑒 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 
⇒ 𝑥𝑥2 = 9𝑒𝑒2 
⇒ 𝑥𝑥2 ℎ𝑎𝑎𝑖𝑖 9 𝑎𝑎𝑖𝑖  𝑎𝑎 𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑒𝑒 

 
12 We just use ⇒ rather than mixing in ⟺ 
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⇒ 𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 9 
  
What we have done here is combine each line with the next, so rather than writing 
 
𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑦𝑦 3 ⇒ 𝑥𝑥 = 3𝑒𝑒 
𝑥𝑥 = 3𝑒𝑒 ⇒ 𝑥𝑥2 = 9𝑒𝑒2 
𝑑𝑑𝑒𝑒𝑎𝑎 

we avoided repeating ourselves line by line by writing: 
 
𝒙𝒙 𝒊𝒊𝒊𝒊 𝒅𝒅𝒊𝒊𝒅𝒅𝒊𝒊𝒊𝒊𝒊𝒊𝒅𝒅𝒅𝒅𝒅𝒅 𝒅𝒅𝒃𝒃 𝟑𝟑  
⇒ 𝑥𝑥 = 3𝑒𝑒 
⇒ 𝑥𝑥2 = 9𝑒𝑒2 
𝑑𝑑𝑒𝑒𝑎𝑎 

We can now look at the general structure of these simple deductive proofs: 
 
If we are asked to prove A ⇒ B we move from A to B in a series of small steps: 
 

A ⇒ P, P ⇒ Q, Q ⇒ R, R ⇒ B 
 
Which we can write more briefly as:  
 

A ⇒ P ⇒ Q ⇒ R ⇒ B 
  
 
As we mentioned above, this works because we make sure that each step inherits 
truth from the previous step:  remember that if P is true and P ⇒ Q is true then Q is 
true and so on – and we make sure that P is true and P ⇒ Q are true by working 
through a proof of if A then B in small steps starting at A and ending at B.  
  

66



Proof by contradiction 
 
Mathematical Proof 
 
Prf1  Proof by contradiction 
 
 

Another type of proof you need to know about is called “proof by contradiction”. We 
shall start this section by setting out a proof that √𝟐𝟐 is irrational using this method. 
We shall then explore how this type of proof works in a little more detail: 
 
To prove:  √2 is irrational  
 
Proof: 
We start by assuming that √2 is not irrational, that is we assume that √2 is rational. 
If √2 is rational it can be written as a fraction in its lowest terms; that is, we can 
write: 

√2 =  
𝑎𝑎
𝑎𝑎

 

 
where 𝑎𝑎 and 𝑎𝑎 have no factors in common. 
Squaring both sides gives us: 
 

2 =
𝑎𝑎2

𝑎𝑎2
 

 which gives: 
 

2𝑎𝑎2 = 𝑎𝑎2 
 
From this we can see that 𝒂𝒂𝟐𝟐 is even.  
For 𝒂𝒂𝟐𝟐 to be even, 𝒂𝒂 itself must be even.13  
And if 𝒂𝒂 is even then 𝒂𝒂𝟐𝟐 is divisible by 4.  
If 𝒂𝒂𝟐𝟐 is divisible by 4 then 𝒅𝒅𝟐𝟐 must also be even. 
For 𝑎𝑎2 to be even, 𝑎𝑎 must be even. 
Thus, we have 𝑎𝑎 is even and 𝑎𝑎 is even.  
This contradicts the assumption that 𝑎𝑎

𝑏𝑏
 is a fraction in its lowest terms. 

This assumption must, therefore, have been false; that is, our assumption that √2 is 
rational must have been false so √2 must, in fact, be irrational. 
 
What have we done here? We have taken what we wanted to prove, that √2 is 
irrational, and assumed that it is not true. We have then, through a series of valid 
logical steps, derived a contradiction. In this case our contradiction is found between 

 
13 Mathematical proofs vary depending on the audience. You will often have to make 
some assumptions as to what is well known to your audience. This step could itself 
be proved but it is a generally accepted statement.  
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our assumption that √2 is rational and so can be expressed as a fraction in its lowest 
terms and the conclusion that both 𝑎𝑎 and 𝑎𝑎 are even. As we have used nothing but 
valid logical steps from start to finish, our assumption must have been incorrect. Our 
assumption was that √2 is rational and this must have been incorrect. 
 

We can now set out the general structure of proof by contradiction: 
 

• We are asked to prove some statement A. 
 

• We start by assuming not A is true. 

• We then show that not A leads us to two contradictory statements, B and 
not B. 

 
• As B and not B cannot both be true our assumption that not A was true must 

have been an error. 
 

• If not A is false, then A must be true. 

 

Exercise O 

1. Replace 2 by 9 in the proof that √𝟐𝟐 is irrational.  Why does the proof no longer 
work? 
 
2. Can you adapt the proof that √2 is irrational to show that �𝑝𝑝 is irrational for all 
prime 𝑝𝑝? 
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Proof by contrapositive 
 
 
Prf1  Direct deductive proof (‘Since A, therefore B, therefore C,…, therefore Z, 

which is what we wanted to prove’) 
 
Arg1 The contrapositive of a statement 
 
 
 
If we are asked to prove if A then B we can try to prove the contrapositive instead as 
sometimes this can turn out to be much easier. Remember that the contrapositive of 
if A then B is if not B then not A and these statements are logically equivalent – i.e. 
both expressions say the same thing. Because if not B then not A is the very same 
thing as if A then B we can prove the contrapositive of a statement instead of 
proving the statement itself. 
 
Here is an example: 
 
Prove the following by using the statement’s contrapositive: 
 

𝑖𝑖𝑓𝑓𝑒𝑒 𝑎𝑎𝑒𝑒𝑦𝑦 𝑒𝑒𝑓𝑓𝑒𝑒 𝑧𝑧𝑑𝑑𝑒𝑒𝑓𝑓 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 𝑥𝑥:   𝐢𝐢𝐢𝐢 𝑥𝑥3 𝑖𝑖𝑖𝑖 𝑓𝑓𝑑𝑑𝑑𝑑 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑓𝑓𝑑𝑑𝑑𝑑 
 
The contrapositive of this statement says 
 

               𝑖𝑖𝑓𝑓𝑒𝑒 𝑎𝑎𝑒𝑒𝑦𝑦 𝑒𝑒𝑓𝑓𝑒𝑒 𝑧𝑧𝑑𝑑𝑒𝑒𝑓𝑓 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 𝑥𝑥: 𝐢𝐢𝐢𝐢 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑒𝑒𝑓𝑓𝑒𝑒 𝑓𝑓𝑑𝑑𝑑𝑑 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥3 𝑖𝑖𝑖𝑖 𝑒𝑒𝑓𝑓𝑒𝑒 𝑓𝑓𝑑𝑑𝑑𝑑 
 
And we note that for integers “not odd”, means “even” so we need to prove 
 

𝑖𝑖𝑓𝑓𝑒𝑒 𝑎𝑎𝑒𝑒𝑦𝑦 𝑒𝑒𝑓𝑓𝑒𝑒 𝑧𝑧𝑑𝑑𝑒𝑒𝑓𝑓 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 𝑥𝑥: 𝐢𝐢𝐢𝐢 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥3 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 
 
 
We can construct this proof: 
 
𝐼𝐼𝑖𝑖 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥 =  2𝑝𝑝 𝑖𝑖𝑓𝑓𝑒𝑒 𝑖𝑖𝑓𝑓𝑠𝑠𝑑𝑑 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 𝑝𝑝 

𝐼𝐼𝑖𝑖 𝑥𝑥 =  2𝑝𝑝 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 𝑥𝑥3  =  8𝑝𝑝3   

𝐴𝐴𝑒𝑒𝑑𝑑 𝑎𝑎𝑖𝑖 8𝑝𝑝3  =  2(4𝑝𝑝3) 𝑎𝑎𝑒𝑒𝑑𝑑 𝑎𝑎𝑖𝑖 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎𝑒𝑒 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 𝑒𝑒ℎ𝑑𝑑𝑒𝑒 4𝑝𝑝3 𝑖𝑖𝑖𝑖 𝑎𝑎𝑒𝑒 𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 

𝑇𝑇ℎ𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑑𝑑 𝑥𝑥3  =  2 ×  𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑔𝑔𝑑𝑑𝑒𝑒 

𝑇𝑇ℎ𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑑𝑑 𝑥𝑥3 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒  

𝑇𝑇ℎ𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑓𝑓𝑒𝑒𝑑𝑑 𝑤𝑤𝑑𝑑 𝑎𝑎𝑎𝑎𝑒𝑒 𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑑𝑑 ′𝐢𝐢𝐢𝐢 𝑥𝑥3 𝑖𝑖𝑖𝑖 𝑓𝑓𝑑𝑑𝑑𝑑 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑓𝑓𝑑𝑑𝑑𝑑′ 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑐𝑐𝑑𝑑.  
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Disproof by counterexample 
 
Mathematical Proof 
 
Prf1  Disproof by counterexample 
 
 
A counterexample to a statement is an example that shows clearly that the 
statement must be false. We can show that a statement is false merely by finding a 
counterexample to the statement. This can be useful as it is a quick way of showing a 
statement is false. It is also good practice to get into the habit of taking statements 
you meet apart and trying to discern, using examples, why they are true or false. 
Here is an example: 
 
Example 
 

Statement: all prime numbers are odd. 
 

Counterexample: 2 is a counterexample because 2 is prime but it is even.  
 

Conclusion: the statement all prime numbers are odd is false. 
 
 
What about finding a counterexample to more complex statements? How might we 
set about finding a counterexample to a statement of the form if A then B? First we 
need to keep in mind that a counterexample is an example where the statement [in 
this case our statement is if A then B] is false, so we need to find an example for A 
and for B such that if A then B is false: the only way that if A then B can be false is if 
we can find an example of statement A that is true and an example of statement B 
that is false. Let us look at an example of this:   
 
Example 
  
Find a counterexample to the statement:  if 𝑥𝑥 < 𝑦𝑦 then 𝑥𝑥2 < 𝑦𝑦2  
 
To find a counterexample to this statement, we need to find values of 𝑥𝑥 and 𝑦𝑦 that 
make 𝑥𝑥 < 𝑦𝑦  true but which make 𝑥𝑥2 < 𝑦𝑦2 false. A simple counterexample would 
be: 𝑥𝑥 = −2 and 𝑦𝑦 = 1  
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Exercise P 
 

1. What would constitute a counterexample to a statement of the form: 
 
a. A and B 
b. A or B 
c. A only if B 
d. A iff B 

 
 

2. Find a counterexample, if one exists, to each of the following: 
 

a. all prime numbers are odd and greater than 4 
b. all prime numbers are odd or greater than 37 
c. 𝑥𝑥 is prime if and only if 𝑥𝑥 is odd 
d. 𝑥𝑥 is odd only if 𝑥𝑥 is prime 
e. 𝑥𝑥 is prime only if 𝑥𝑥 is odd 
f. for all positive odd integers 𝑥𝑥: 𝑥𝑥 is prime or 𝑥𝑥 is divisible by some integer 

𝑘𝑘 < 𝑥𝑥 
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Common errors in proofs 
 
Identifying Errors in Proofs 
 
Err1   Identifying errors in purported proofs.  
 
Err2  Be aware of common mathematical errors in purported proofs; for example, 

claiming ‘if 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎, then 𝑎𝑎 = 𝑎𝑎’ or assuming ‘if sin𝐴𝐴 = sin𝐵𝐵, then 𝐴𝐴 = 𝐵𝐵’ 
neither of which are valid deductions. 

 
 
There are lots of pitfalls in setting out proofs and you should start to collect a set of 
examples of where proofs can go wrong and look out for these sorts of errors and 
misunderstandings in your own work and in proofs that you are given to study. In 
this section we shall look at a few examples of the sorts of mistakes and errors that 
can occur in proofs; but, be warned, this is not an exhaustive list and there are many 
errors that mathematicians can make when setting out proofs. 
 
 
Square roots and squaring equations:  
 
In this specification we shall take it that √𝑥𝑥 means the positive number 𝑦𝑦 such that 
𝑦𝑦2 = 𝑥𝑥; this is standard in mathematics. Generally, we need to be careful with 
equations when we square them. We need to be careful in case we generate extra 
solutions to the equation.  Here are two examples: 
 

Example 1 
 
Given 𝑥𝑥 = √25 [recall this means 𝑥𝑥 = +5] 
Square both sides: 𝑥𝑥2  =  25 
Find all values of 𝑥𝑥 which make 𝑥𝑥2  =  25 true:  𝑥𝑥 =  ±5 
So, we have generated an extra solution, namely 𝑥𝑥 = −5 which we didn’t have to 
start with. 
 

 

Example 2 
 
Find 𝑥𝑥 given 𝑥𝑥 + 1 = 4 
Square both sides:  (𝑥𝑥 + 1)2 = 16 
Giving: 𝑥𝑥2 + 2𝑥𝑥 + 1 = 16 
or,  𝑥𝑥2 + 2𝑥𝑥 − 15 = 0 
Factorising: (𝑥𝑥 + 5)(𝑥𝑥 − 3) 
Giving solutions: 𝑥𝑥 = −5 or 𝑥𝑥 = +3  
Here we can see that by squaring the original equation we have generated an extra 
solution, namely 𝑥𝑥 = −5  
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Exercise Q 
 
Solve : √2𝑥𝑥 + 3 + √𝑥𝑥 + 1 =  √7𝑥𝑥 + 4 
 
 
Dealing with inequality signs: 
 
When students first meet inequality signs, they naturally assume they behave the 
same way as equals signs: they don’t. For an equals sign, the general rule that 
students go by is that “whatever you do to one side of the equals sign you must do 
to the other” and this is usually fine for equals signs. However, if you use this rule 
within inequality signs then it might be the case that the inequality is no longer 
preserved. Here are some pitfalls that you need to watch out for: 
 
Squaring both sides: 
 
−5 <  4 is correct but on squaring we obtain the false  25 < 16 
 
Multiplying both sides by a negative number: 
 
1 < 2 is true, but  on multiplying by −1 we obtain the false −1 < −2  
 
Taking some function of both sides: 
 
𝜋𝜋
4

< 𝜋𝜋
3
 is true but on taking the cosine of both sides we obtain the false cos 𝜋𝜋

4
< cos 𝜋𝜋

3
 

 

Exercise R 
 

1. Given 𝑥𝑥 < 𝑦𝑦 what positive integer values of 𝑒𝑒 make 𝑥𝑥𝑛𝑛 < 𝑦𝑦𝑛𝑛 true? 
2. What general characteristics would the function 𝑖𝑖 need to have to make 

𝑖𝑖(𝑥𝑥) < 𝑖𝑖(𝑦𝑦) given 𝑥𝑥 < 𝑦𝑦? [Discuss this with others in your class.] 
3. Starting with 𝑥𝑥+2

2𝑥𝑥+7
< 5, is it then valid to deduce  𝑥𝑥 + 2 < 5(2𝑥𝑥 + 7)? Justify 

your answer. [Discuss this with others in your class.] 
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Dividing or multiplying by zero: 
 
Dividing both sides of an expression by a second expression that is equal to zero can 
cause problems. Generally, we cannot divide by zero as it can generate nonsense. 
For instance, we know 7 × 0 = 5 × 0  but we cannot divide both sides by 0 to give  
7 = 5. This issue extends to examples that contain algebra. Here is a classic proof 
that commits this error [can you spot exactly where the error occurs?]: 
 
Let 𝑥𝑥 and 𝑦𝑦 be non-zero numbers such that 𝑥𝑥 =  𝑦𝑦 
Then we can write 𝑥𝑥2 =  𝑥𝑥𝑦𝑦  
Subtract 𝑦𝑦2  from both sides: 𝑥𝑥2 −  𝑦𝑦2 =  𝑥𝑥𝑦𝑦 −  𝑦𝑦2  
So (𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) = 𝑦𝑦(𝑥𝑥 − 𝑦𝑦) 
Dividing by (𝑥𝑥 − 𝑦𝑦):  𝑥𝑥 +  𝑦𝑦 =  𝑦𝑦  
As 𝑥𝑥 =  𝑦𝑦, we have:  2𝑦𝑦 =  𝑦𝑦 
Then dividing by the non-zero number 𝑦𝑦:   2 =  1 
Subtracting 1 from both sides: 1 =  0 
Therefore 1 = 0  
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