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INTRODUCTION 

This is worth reading before you use this guide. 

We have three aims in writing these notes: 

First, we want to set out what we expect you to know for the TMUA and for ESAT 
Mathematics 2 [we just say TMUA/ESAT in these notes but when we do, we mean 
TMUA and ESAT Mathematics 2; and recall that Paper 2 of the TMUA requires you to 
know all of the paper 1 specification too].  We do this by basing these notes on the 
relevant part of the specification and adding comments throughout when we wish to 
clarify how to interpret aspects of the specification.  

Second, we want to encourage you to think deeply and carefully about mathematics 
and to develop a good understanding of the topics in the specification. To help with 
this, we have added a lot of discussion and examples as well as some exercises 
throughout the notes. We recommend you work through each exercise.  

Third, we want to make sure that all candidates have access to a free resource to help 
them prepare for the TMUA and the ESAT. 

How to use this guide 

You do not need to work through all this guide as you will find that you know many of 
the topics in the specification very well already. Use this guide as a resource to help 
you clarify and review topics that you are less familiar with. We have broken down our 
discussion to fit exactly with the specification to make things as simple to navigate as 
possible. 

What this guide is not 

This guide is not a comprehensive textbook: we do not cover every topic to the same 
level of detail, and we do not develop every topic from scratch. It is also not a substitute 
for sustained hard work and preparation.  It is a resource to help you and to guide you 
in the right direction.  

These notes are not intended to be a rigorous or perfect guide to the foundations of 
mathematics. Occasionally, we have simplified topics in a manner that might make a 
purist squirm a smidgen. We have often, but not always, indicated when we have been 
deliberately vague or simplified things.  
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Other resources 

As well as this guide, there is the Notes on Logic and Proof which we produced for 
paper 2 of the TMUA. There are also many past papers on the UAT website that you 
can work through, and all the TMUA past papers have detailed solutions for you to 
look at as well.   

The best way to tackle past papers is to use them under timed conditions as much as 
possible as that will give you a feel for the real TMUA or ESAT. The UAT website also 
has links to some practice papers in the on-screen format that will be used for the live 
papers – make sure you look at these to familiarise yourself with the on-screen style.  

Who wrote this guide? 

Both the Notes on Logic and Proof and this guide were written by the same team of 
mathematicians who developed, set and oversee the TMUA and Mathematics 1 and 
2 in the ESAT.  

Should I take a TMUA or ESAT course? 

We do not recommend that you take a course and we do NOT endorse any courses.  
No one from the TMUA or ESAT development teams teaches on any courses. All the 
resources you need to prepare are available from the UAT website and are entirely 
free. If you spend the same amount of time studying by yourself or with friends, you 
will get at least the same benefit as going on a course, but you will save the cost.   

TMUA and MATHEMATICS 2 of the ESAT 

And finally, a note about Mathematics 2 in the ESAT and the TMUA.  In developing 
both these assessments, we have kept the mathematical knowledge required as 
accessible and as straightforward as possible. We expect everyone taking the ESAT 
and TMUA to enter the exam equipped with the same level of mathematics knowledge. 
Both the TMUA and Mathematics 2 in the ESAT aim to test your ability to use your 
knowledge to answer problems that you are unlikely to have met before. We make 
sure that our questions do not require vast amounts of working to solve, and we make 
sure that there is no advantage if you have studied more advanced mathematics 
topics. Most of the work you will need to do when solving our questions will be in the 
thinking.  
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A final note 

We have used boxes throughout these notes to help you navigate. 

The relevant part of the specification is found in these sorts of boxes: 

Specification 

Examples in these sorts of boxes 

Examples 

And exercises [we have not given any answers to our exercises] in these sorts of 
boxes. 

Exercises 

We hope to be able to update and, if necessary, correct these notes now and again. 
Look at the date on the front page to see when these notes were last edited. 
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MM1. Algebra and functions  
MM1.1.  

Laws of indices for all rational exponents. 

Indices [or powers, or exponents, if you prefer] are really a mathematician’s method 
for writing out certain ways of combining numbers without using vast quantities of ink.1 
They are a good example of what a well-chosen notation can do. A well-chosen 
notation aids thinking and makes calculations and manipulations easier than they 
might otherwise be. For the TMUA/ESAT you are expected to know all the basic rules 
of indices – both what the notation means and how to deal with the notation. 

In this section, we will introduce the basic rules we expect you to know along with 
some informal notes to help you start to think about how the ideas fit together. 

We start with the very basic idea of an index for a number 𝑎𝑎 multiplied by itself a total 
of 𝑚𝑚 times [that is, 𝑎𝑎 appears 𝑚𝑚 times in the expression] : 

𝑎𝑎 × 𝑎𝑎 × 𝑎𝑎 × … × 𝑎𝑎�������������
𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑡𝑡𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 ℎ𝑎𝑎𝑎𝑎𝑎𝑎

We write this concisely as 𝑎𝑎𝑚𝑚 

This basic idea allows us to work out how we might combine powers when we multiply: 
we can ask how we might write 𝑎𝑎𝑚𝑚 × 𝑎𝑎𝑛𝑛. If we write the whole expression out term-by-
term and then use the rule that 𝑎𝑎 × 𝑎𝑎 × 𝑎𝑎 × … × 𝑎𝑎  𝑚𝑚-times is written as 𝑎𝑎𝑚𝑚 we arrive 
at the following: 

𝑎𝑎𝑚𝑚 × 𝑎𝑎𝑛𝑛 = (𝑎𝑎 × … .× 𝑎𝑎)���������
𝑚𝑚 𝑡𝑡𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎

× (𝑎𝑎 × 𝑎𝑎 × … × 𝑎𝑎)�����������
𝑛𝑛 𝑡𝑡𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 

=  𝑎𝑎 × 𝑎𝑎 × 𝑎𝑎… × 𝑎𝑎�����������
𝑚𝑚+𝑛𝑛 𝑡𝑡𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 

= 𝑎𝑎𝑚𝑚+𝑛𝑛 

And so, we have our first rule for our notation – a rule that is really just the direct 
consequence of how we decided to write 𝑎𝑎 × 𝑎𝑎 × 𝑎𝑎 × … × 𝑎𝑎 in our notation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1       𝑎𝑎𝑚𝑚 × 𝑎𝑎𝑛𝑛 ≡ 𝑎𝑎𝑚𝑚+𝑛𝑛 

We note that, for the moment, this rule applies when 𝑚𝑚 and 𝑛𝑛 are whole positive 
numbers. Later we will explain that the rule works for ALL real numbers 𝑚𝑚 and 𝑛𝑛. 

Next, we are going to extend this rule to “invent/derive” and motivate some other 
notation. We want to be able to use this rule when 𝑚𝑚 and 𝑛𝑛 are not integers and we 
also want to make sure that our notation is consistent – that is, we don’t want to find 

1 Mathematicians like beauty, clarity, precision, elegance, and brevity; saving ink whilst maintaining these 
virtues is the ideal. 
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that we introduce definitions and rules that give us different answers depending on 
how we apply them. 

The first thing we are going to decide is that RULE 1 works when 𝑎𝑎 is positive and 𝑚𝑚 
and 𝑛𝑛 are ANY rational number – there are good reasons for this decision which we 
shall talk about later. That means, for instance, we can apply the rule when 𝑚𝑚 is 1

3
 and 

𝑛𝑛 is −31
17

  and so on. But we do need to ask, what does 𝑎𝑎
1
3 mean, and what does the

minus sign in 𝑎𝑎− 3117 mean?  We will motivate our answers using RULE 1 as this will
ensure that our use of notation extended to fractional powers is consistent. 

Let’s start by trying to work out what we would like 𝑎𝑎
1
3 to mean. We can use RULE 1

extended to fractions to write: 

𝑎𝑎
1
3𝑎𝑎

1
3𝑎𝑎

1
3 = 𝑎𝑎�

1
3+

1
3+

1
3� = 𝑎𝑎1 = 𝑎𝑎 

And this means that we must interpret 𝑎𝑎
1
3 as the cube-root of 𝑎𝑎 [and note, we also used

𝑎𝑎1 = 𝑎𝑎] 

So, it should be “obvious” that we must interpret 𝑎𝑎
1
𝑛𝑛 as the 𝑛𝑛th root of 𝑎𝑎 ; this gives us

our second rule: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 2  𝑎𝑎
1
𝑛𝑛 =  √𝑎𝑎𝑛𝑛  

Next, we are going to look at what happens when we introduce a minus sign into the 
power. We are going to do this by exploring how RULE 1 might fit together with 
expression such as 𝑎𝑎3 × 𝑎𝑎−2: 

Using RULE 1 extended to negative numbers we obtain the following: 

𝑎𝑎3 × 𝑎𝑎−2 = 𝑎𝑎3+(−2) = 𝑎𝑎1 = 𝑎𝑎 

And we ask ourselves what we need to multiply 𝑎𝑎3 by to get 𝑎𝑎; and the answer is that 
we need to multiply 𝑎𝑎3 by 1

𝑎𝑎2
 to get an answer of  𝑎𝑎. This suggests that we should 

interpret 𝑎𝑎−2  as being the same as 1
𝑎𝑎2

  and leads to our third rule: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 3  𝑎𝑎−𝑚𝑚 =
1
𝑎𝑎𝑚𝑚

Again, this only works when 𝑎𝑎 is a positive number.  

Next, we will tackle 𝑎𝑎0.   To do this, we will use RULE 1 and RULE 3: 

𝑎𝑎2 × 𝑎𝑎−2 = 𝑎𝑎2+(−2) = 𝑎𝑎0 

But we can also look at this another way: 
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𝑎𝑎2 × 𝑎𝑎−2 = 𝑎𝑎2 ×
1
𝑎𝑎2

=
𝑎𝑎2

𝑎𝑎2
= 1 

Now recall, we must make sure that all the definitions and rules we use are consistent 
– that is to say that we get the same answer no matter how we tackle a question using
our rules. This means we must have 𝑎𝑎0 = 1.

There are other ways of deciding or justifying that 𝑎𝑎0 must have the value 1 and we 
will touch upon some of these ideas at the end of this section when we look at how we 
might extend the rules to cases where the powers are irrational numbers. 

We now have RULE 4: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 4    𝑎𝑎0 = 1 

Again, this works only when 𝑎𝑎 is a positive number.  

You should now have enough information to understand the other rules of indices: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 5       𝑎𝑎𝑚𝑚 ÷ 𝑎𝑎𝑛𝑛 =  
𝑎𝑎𝑚𝑚

𝑎𝑎𝑛𝑛
 =  𝑎𝑎𝑚𝑚  × 𝑎𝑎−𝑛𝑛 = 𝑎𝑎𝑚𝑚−𝑛𝑛 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 6        (𝑎𝑎𝑚𝑚)𝑛𝑛 = 𝑎𝑎𝑚𝑚 × 𝑎𝑎𝑚𝑚 × … × 𝑎𝑎𝑚𝑚�������������
𝑛𝑛 𝑡𝑡𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎

= 𝑎𝑎𝑚𝑚+𝑚𝑚+⋯+𝑚𝑚���������
𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝑎𝑎𝑚𝑚𝑛𝑛 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 7     𝑎𝑎
𝑚𝑚
𝑛𝑛 = (𝑎𝑎𝑚𝑚)

1
𝑛𝑛 =  √𝑎𝑎𝑚𝑚𝑛𝑛 = �𝑎𝑎

1
𝑛𝑛�

𝑚𝑚
= � √𝑎𝑎𝑛𝑛 �

𝑚𝑚

With one of these rules [RULE 6], it is important to be a little careful as sometimes it 
is possible to misinterpret the notation: consider the two expressions (𝑎𝑎𝑚𝑚)𝑛𝑛  and 𝑎𝑎𝑚𝑚𝑛𝑛. 
It is easy to think that these two expressions mean the same thing as they look very 
similar and often look almost the same when they are written out on paper.  But they 
mean different things: 

(𝑎𝑎3)2 = 𝑎𝑎3 × 𝑎𝑎3 = 𝑎𝑎6           𝑎𝑎32 = 𝑎𝑎(3×3) = 𝑎𝑎9 

Finally, we have been careful throughout this section to emphasise that the rules only 
work when 𝑎𝑎 is a positive number [rational or irrational]. And our rules allow us to 
understand the meaning of 𝑎𝑎𝑚𝑚 when 𝑚𝑚 is any positive or negative rational numbers or 
zero [RULE 3 and RULE 7 are useful here]. In fact, even though the specification 
restricts things to rational powers only, the rules work for any positive 𝑎𝑎 and any real 
[rational or irrational] 𝑚𝑚 and 𝑛𝑛.  
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Because the specification says “rational exponents” we are careful in TMUA/ESAT 
questions to ensure that these issues [that powers are rational, but can be irrational] 
are not ones that you need to think about; that is to say, even though we do set 
questions where 𝑚𝑚 and 𝑛𝑛 could be irrational, we are careful to ensure this fact does 
not get in the way of your ability to answer the question. 

The rest of this section is NOT part of the TMUA/ESAT specification, so you can skip 
it if you want. But it is useful and gives you some insights into how mathematicians 
think about things. 

We are going to answer the question: what happens to our rules when 𝑚𝑚 or 𝑛𝑛 are not 
rational, and what happens when 𝑎𝑎 is zero or even when 𝑎𝑎 is a negative number? This 
will help you understand why we only have positive 𝑎𝑎 values but we let 𝑚𝑚 and 𝑛𝑛 be 
any real number. 

The answer is that things get more complicated in some cases but not others. We will 
look at two cases and make some brief comments on some of the others: 

Case 1  

What happens when 𝑎𝑎 is positive but 𝑚𝑚 and 𝑛𝑛 are irrational? 

The answer is [as we have already mentioned] that all the rules still apply, and we 
interpret 𝑎𝑎𝑚𝑚 [and 𝑎𝑎𝑛𝑛] where 𝑚𝑚 is irrational in a clever way. Let’s look at how we might 
interpret  2√3. We will tackle this by looking at how we deal with graphs of exponential 
functions. You will probably have met the graph of  𝑦𝑦 = 2𝑥𝑥 and sketched it but with no 
thought about whether 𝑥𝑥 is rational or whether 𝑥𝑥 is irrational. If we try to sketch the 
graph of  𝑦𝑦 = 2𝑥𝑥 only when 𝑥𝑥 is rational, we will get a series of dots rather than an 
unbroken curve. One dot above each rational 𝑥𝑥 on the 𝑥𝑥-axis. The dots will be so close 
together that it will be hard to tell by just looking that our graph of dots and the unbroken 
curve that you would usually sketch for 𝑦𝑦 = 2𝑥𝑥 are slightly different.  We then assume 
that the values of 2𝑥𝑥 when 𝑥𝑥 is irrational are exactly those values that “fill the spaces” 
between the dots on our graph to make the unbroken curve of 𝑦𝑦 = 2𝑥𝑥 look “the same” 
as the broken curve of dots. So, the value of 2√3 is “between” the values of  2𝑎𝑎  and  
2𝑞𝑞 where 𝑝𝑝 is  a rational number a teeny bit less than √3  and 𝑞𝑞 is a rational number a 
teeny bit more than √3.  

This is a rather loose explanation of what we do to define irrational powers, but it is 
essentially correct. What we actually do is use the idea of limits and we can illustrate 

this idea by trying to find the value of 20.  We do this by looking at 2
1
𝑡𝑡  but we try to

make this expression as close to 20 as possible by making 1
𝑚𝑚

 as close to 0 as possible. 
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And we do that by making 𝑚𝑚 either very big and positive or very big and negative. Let’s 

start with 𝑚𝑚 being very big and positive:  then  2
1
𝑡𝑡 =  √2𝑡𝑡   and if you play around with 

various roots of 2, you will see that as 𝑚𝑚 gets bigger [and so 1
𝑚𝑚

 gets smaller and 2
1
𝑡𝑡 

gets closer to 20] that the value of √2𝑡𝑡  gets close to 1. Similarly, if we look at 2
1
𝑡𝑡   when 

𝑚𝑚 is large and negative, we see that the value of 2
1
𝑡𝑡  also approaches 1.2  This all 

suggest that we define 20 =  1. And this idea extends to all 𝑎𝑎0  where 𝑎𝑎 is positive.   
You can also sketch the graphs3 of 𝑦𝑦 = 𝑎𝑎𝑥𝑥 for various positive values of 𝑎𝑎 to see how 
things fit together [and notice how the shape of the graph changes depending on 
whether 𝑎𝑎 > 1  or 0 < 𝑎𝑎 < 1 ] 

Case 2 

What happens when 𝑎𝑎 is negative ? 

In simple terms, things go wrong very quickly. Consider the value of (−64)
1
3   our 

definitions suggest this is just the cube root of −64 which is −4  so all seems well. 

Now, consider (−64)
1
2 ; this is supposed to be the square root of −64,  but −64 does 

not have a square root, or at least it does not have one in the real number system. So, 
we see that it gets messy and for different values of 𝑥𝑥, even ones very very close 
together, we encounter problems. This is why, when you first meet them, index laws 
are only used for positive 𝑎𝑎 values and rational powers [although we can cope with 
irrational powers as we saw above] 

Something to think about: what happens to 𝑎𝑎𝑚𝑚  when 𝑎𝑎 = 0  ?   

 

  

 
2 The case when 𝑚𝑚 is negative takes a little more care to deal with. Have a think about how it works.  
3 A good website to use to help you understand graph sketching is DESMOS GRAPHING  
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MM1.2.  
Use and manipulation of surds.  
Simplifying expressions that contain surds, including rationalising the denominator.  

For example: simplifying  √5
3+2√5

   and   3
√7−2√3

  

 

 

What is a surd? Here we consider a surd to be an expression that has a root in it 
[usually a square root] that cannot be simplified to a rational expression. For instance. 
3 + 5√2 is a surd as we cannot simplify it to a rational expression; whereas 3 + 5√64  
is not a surd as we can simplify it to 43. Surds are a mathematical way of expressing 
numbers exactly and they help get around the impossibility of expressing certain 
irrational numbers precisely using decimal expansion – that is, for instance, it is 
impossible to express √2  exactly as a decimal as the decimal bit of the number √2 is 
never ending.  

Before we look at the sorts of things we might expect you to know for the TMUA/ESAT, 
we note that there is a convention with square root signs that we adopt in the 
TMUA/ESAT [it is a standard maths convention] and that is that √𝑎𝑎 is always positive. 
So √64 is 8 and not −8. If we want to have both 8 and −8, we write ±√64 

What sort of things do we expect you to be able to do with surds in the TMUA/ESAT? 
Let’s look at a few: 

Simplifying roots 

We expect you to be able to simplify expression such as √50 or √40  in various ways. 
You should be comfortable with how the following, and similar, examples work: 

√50 =  √25 × 2 =  √25  ×  √2 = 5√2  

√40 =  √4 × 10 = 2√10 = 2√2 × 5 = 2√2√5  

Multiplying out expressions that involve surds. 

The best way to multiply out expression with surds in them is to treat the square roots 
like 𝑥𝑥 and then simplify at the very final stage.  Here is an example: 

�2 + 3√5�
2

= 22 + 2 × 2 × 3√5 + 32√5√5 = 4 + 12√5 + 45 = 49 + 12√5 

Compared with 

(2 + 3𝑥𝑥)2 = 22 + 2 × 2 × 3𝑥𝑥 + 32𝑥𝑥𝑥𝑥 = 4 + 12𝑥𝑥 + 9𝑥𝑥2 
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Factorise expression with surds in them.  

From our earlier discussion, we can see that going from �2 + 3√5�
2
 to 49 + 12√5 is 

quite easy. But it is less easy to start with 49 + 12√5 and factorise it to get �2 + 3√5�
2
. 

Nevertheless, you should be able to factorise expressions with surds in when it might 

be useful.  For instance, if you were asked to find the exact value of �49 + 12√5  you 

would need to spot that 49 + 12√5 =  �2 + 3√5�
2
 to get to the answer.   

How might you go about factorising expression with surds in them?  There are a few 
“tricks” that might help sometimes – although it is best to practise this yourself and 
devise your own “tricks” and way of approaching the factorising. 

Let’s look at 49 + 12√5  and compare it with 4 + 12𝑥𝑥 + 9𝑥𝑥2  from above: 

The first thing we notice is that the 12√5  is the middle term [and this is usually where 
we start with this sort of question], so this suggest that our original expression must 

be �𝑎𝑎 + 𝑏𝑏√5�
2
. We then notice that the middle term is also written as 2𝑎𝑎𝑏𝑏√5 . This 

means we must have 𝑎𝑎𝑏𝑏 = 6  and 𝑎𝑎2 + 5𝑏𝑏2 = 49.  Now all we need to do is substitute 
pairs of numbers that multiply to give 6 into the equation 𝑎𝑎2 + 5𝑏𝑏2 = 49 until we find 
some that work. It doesn’t take long to find 𝑎𝑎 = 2 and 𝑏𝑏 =  3 [ you can start with 𝑏𝑏 and 
work though 𝑏𝑏 = 1, 2, 3, 6 until you find which one works]  

Exercise 

Start with some random surd expression and square them and simplify them. Then 
look at the expressions, maybe after some days, and see if you can factorise them 
back to their original form. 

 

Exercise 

 What is �49 − 12√5  ?  Be very careful – you might get the wrong answer4 ! 

 

 

Rationalising the denominator 

This is probably the most common thing you will meet with surds in standard exams. 
It is about “moving” the surd expression in a fraction from the bottom of the fraction 
the top. That is, we want to find another expression that has the same value as the 

 
4 The answer is not 2 − 3√5 . Why not ?  
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original, but which has a surd in the numerator [top] of the fraction and no surds in the 
denominator [bottom].5  

In simple cases, this is straightforward. For instance, how do we rationalise the 
denominator for 1

√5
 ?  The answer is we multiply the expression by 1 but we write 1 in 

an unusual manner: we use 1 =  √5
√5

    and this gives: 

 

1
√5

=  
1
√5

 × 1 =
1
√5

 ×
√5
√5

=   
√5

√5 × √5
=  
√5
5

 

 

In practice, you should be able to convert from 1
√5

  to √5
5

  almost without thinking about 

it: 1
√𝑎𝑎

= √𝑎𝑎
𝑎𝑎

 

What about more complicated expressions such as 3
2+√5

 ?  We use the same idea – 
that is, multiplying by 1, but by writing 1 in a specific way. We also use the standard 
difference of two squares formula - this is a formula that crops up everywhere and so 
you should always be on the lookout for it just in case it might be useful, but also be 
aware that using it can sometimes lead you down the wrong path.6 

Recall the difference of two square formula: 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) 

Let’s look at using all this to rewrite  3
2+√5

.  We need to multiply by 1 written in an 
appropriate manner. We start by using the difference of two squares and noticing: 

�2 + √5 ��2 − √5 � = 4 − 5 = −1 

And also   

�√5  + 2��√5  − 2� = 5 − 4 = 1 

 
5 As you will be aware, the top and the bottom of fractions have different roles. The bottom of a fraction 
[denominator] tells us [denominates] what sort of fraction it is [is it halves, or thirds, or quarters, etc]. The top 
of a fraction [numerator] enumerates [i.e. tells us how much] of the fraction we have. This seems obvious but 
it is often misunderstood when fractions are first met – for instance, it is common to see 1

2
+ 2

3
=  1+2

2+3
.   Have a 

think about how you perform fraction division: usually the rule used is “flip the second fraction and multiply”. 
Can you explain why this method works [hint, make the denominators the same then think about what the 
denominator tells you] ?  And is the following true [and, if so, why]: 𝑎𝑎

𝑏𝑏
÷ 𝑐𝑐

𝑑𝑑
=  𝑎𝑎÷𝑐𝑐

𝑏𝑏÷𝑑𝑑
 ? 

6 Doing mathematics is sometimes a bit like playing chess. When you have an idea, you also need to anticipate 
what the consequences of applying the idea will be before devoting time to pursuing it. Sometimes, ideas that 
seem perfect at the start will lead you down the wrong path.  Mathematics is also a bit like chess in that the 
more you practise your mathematics, the better you will become at it.  
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Looking carefully at both of these, we decide to use 1 written as √5 −2
√5 −2

  [we could use 
2−√5 
2−√5 

 but it gives us a negative value and that involves a teeny bit more work].  So, we 

now rewrite our expression 3
2+√5

 as follows: 

3
2 + √5

=
3

2 + √5
 × 1 =  

3
2 + √5

 ×
√5  − 2
√5  − 2

=  
3√5  − 6

5 − 4
=

3√5  − 6
1

=  3√5  − 6 

 

Of course, you should be able to rationalise denominators much more quickly than we 
have done above – we just took our time to explain each step carefully.  

As an aside: it is very easy when rationalising denominators to be careless and write 
√5 × √5 = 25.  Make sure you don’t! 

Exercise 

What is the factorisation of 𝑎𝑎3 − 𝑏𝑏3  and of  𝑎𝑎3 + 𝑏𝑏3 ? [these factorisations are both 
useful and you ought to know them]    

Can you use these to help you rationalise the denominators in:   

7
√363 + √63 + 1

 

 

𝑥𝑥 − 27
√𝑥𝑥3 − 3
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MM1.3.  

Quadratic functions and their graphs; the discriminant of a quadratic function; 
completing the square; solution of quadratic equations. 

 
 
 
Quadratics are essentially functions that are written in the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐   where 
𝑎𝑎 ≠ 0. The term “quadratic” can mean the function, or the graph, or the expression etc. 
– it is generally a loose term for all things related to the function. 
 
In this section we will look at the quadratics both algebraically and graphically. It will 
help if you read this section in conjunction with the one on “graph shifting” below and 
also have some graphing software to hand [e.g., DESMOS GRAPHING ]. 
 
Why is there so much talk about quadratics in GCSE and A level mathematics? The 
simple answer is that they are both simple to deal with and have lots of interesting 
properties that can be clearly illustrated without adding unnecessary complications. 
They are the perfect “toy” function to play with to help you start to understand more 
complicated concepts and graphs as your mathematical knowledge develops. 
 
Before we start exploring some aspect of quadratics, let’s list many of the sorts of 
things you are expected to be able to do with quadratics: 

1. Factorise them when appropriate. 
2. Solve quadratic equations using “the formula”. 
3. Complete the square for a given quadratic [and it is useful to know how this 

process relates to the quadratic formula]  
4. Understand the relationship between the roots of a quadratic and its graph. 
5. Understand the relationship between a quadratic written in completed-square 

form and its graph.  
6. Sketch quadratic curves given the equation [marking 𝑥𝑥-intercepts (i.e., roots) 𝑦𝑦-

intercept and min /max coordinates] 
7. Understand how to use the discriminant of a quadratic to tell you about the 

quadratic’s roots.  
8. Know how to find the coordinates of the min/max by completing the square, or 

by differentiating. 

  

Generally, if you are asked to solve a quadratic equation, it is usually better to see if 
you can factorise it before launching into other methods [such as using the quadratic 
formula or completing the square].  

The main topic we shall look at here is the interplay between the algebra of quadratics 
and their graphs: 
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Let’s start by looking at a simple quadratic 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  and write it in “completed 
square” form:7 

𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = �𝑥𝑥 +
𝑏𝑏
2�

2

−
𝑏𝑏2

4
+ 𝑐𝑐  

We can see from this that the graph of 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 is the same shape as the graph 
of 𝑦𝑦 = 𝑥𝑥2 but it is in a different place on the 𝑥𝑥𝑦𝑦 plane. In fact, if we start with the graph 

of 𝑦𝑦 = 𝑥𝑥2  and “shift” [or translate] it to the left by 𝑏𝑏
2
 and then “up” by −𝑏𝑏2

4
+ 𝑐𝑐 then we 

get the graph of 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. We have merely started with the graph of 𝑦𝑦 = 𝑥𝑥2  
and moved it to a new position on the 𝑥𝑥𝑦𝑦 plane; we have not squashed or stretched it. 
So, all graphs of the form 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  are really just the 𝑦𝑦 = 𝑥𝑥2  graph but 
translated to another part of the 𝑥𝑥𝑦𝑦 plane.  

If you look at the “graph shifting” section of these notes, you will see that if 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 

then 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) on shifting becomes 𝑦𝑦 − � −𝑏𝑏2

4
+ 𝑐𝑐� =  𝑓𝑓 �𝑥𝑥 − �− 𝑏𝑏

2
��  which is the 

translation we described. 

What happens to the minimum of 𝑦𝑦 = 𝑥𝑥2 [which is at (0, 0)] when it is shifted by the 

translation?  Its 𝑥𝑥-coordinate moves to −𝑏𝑏
2
  and its 𝑦𝑦-coordinate moves to  −𝑏𝑏2

4
+ 𝑐𝑐.  

This is not surprising, and we can get the same result in other ways.  For instance, we 
can find the 𝑥𝑥 coordinate of the minimum by differentiating and setting equal to 0: 
d
d𝑥𝑥

(𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐) = 2𝑥𝑥 + 𝑏𝑏 = 0 so the minimum occurs at 𝑥𝑥 = −𝑏𝑏
2
  and the 𝑦𝑦-coordinate 

of the minimum is [by substituting 𝑥𝑥 = −𝑏𝑏
2
  into 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 ] −𝑏𝑏2

4
+ 𝑐𝑐  which is 

exactly what we expect from our discussion of graph shifting as the point (0, 0) would 

be shifted to �− 𝑏𝑏
2

 ,−𝑏𝑏2

4
+ 𝑐𝑐�. 

We can investigate the minimum coordinates of 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  a third way: first, 

recall that we have 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = �𝑥𝑥 + 𝑏𝑏
2
�
2
− 𝑏𝑏2

4
+ 𝑐𝑐   and we want to find what 

𝑥𝑥 value gives us the least 𝑦𝑦-value. We notice that �𝑥𝑥 + 𝑏𝑏
2
�
2

  is always positive or zero, 

to make the 𝑦𝑦 value the least possible, we need to make �𝑥𝑥 + 𝑏𝑏
2
�
2

 equal to zero; and 

this means we need 𝑥𝑥 = −𝑏𝑏
2
  just like before. 

What does our discussion about graph shifting for 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  tell us about the 
roots of the quadratic?  First we recall that the roots of the quadratic are the solutions 
to 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0 and so they are the 𝑥𝑥-values when the 𝑦𝑦-value is zero, and so they 
are the 𝑥𝑥 -values when the graph crosses the 𝑥𝑥 -axis [because the 𝑥𝑥 -axis has the 
equation 𝑦𝑦 = 0]. How do we know if the shifted graph has roots, in other words, how 

 
7 As always, make sure you understand how the “completed square” form works. 
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do we know if the shifted graph crosses the 𝑥𝑥-axis? The answer is straightforward and 
leads us to the discriminant condition for roots:  we start by recalling (0, 0) on 𝑦𝑦 = 𝑥𝑥2 

is shifted to to �− 𝑏𝑏
2

 ,−𝑏𝑏2

4
+ 𝑐𝑐� on 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 . The only way that the new graph 

can cross the 𝑥𝑥-axis is if the 𝑦𝑦-coordinate of its minimum point is “under” the 𝑥𝑥-axis8; 

in other words, we require −𝑏𝑏2

4
+ 𝑐𝑐 < 0  for the graph to cross the 𝑥𝑥-axis [we will deal 

with touching the 𝑥𝑥-axis in a moment]. Rearranging this, we get that the quadratic has 
[two real] roots when 0 < 𝑏𝑏2 − 4𝑐𝑐  which is the discriminant of the quadratic [see our 
discussion below if you are not familiar with this]. And if the graph just touches the 𝑥𝑥-
axis then we know the quadratic has one [repeated9] root and also we must have  

−𝑏𝑏2

4
+ 𝑐𝑐 = 0  which leads to −𝑏𝑏2

4
+ 𝑐𝑐 = 0   

Exercise 

How does changing the values of 𝑏𝑏 and 𝑐𝑐 in 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 affect the position of the 
graph?  

You can use a graph sketching package [e.g., DESMOS GRAPHING] and play around 
with different 𝑏𝑏 and 𝑐𝑐 values [positive and negative] to see what happens and then 
make sure you can justify your findings by referring to the discussion above and 
completing the square. 

 

So far, we have looked at 𝑦𝑦 = 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 and related it to 𝑦𝑦 = 𝑥𝑥2  but what about the 
more general quadratic of the form 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  [where 𝑎𝑎 ≠ 0 to make sure it is 
a quadratic]? 

We can start by completing the square on this [the algebra is a little unpleasant but 
worth doing all the same10].  

𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 𝑎𝑎 �𝑥𝑥2 +
𝑏𝑏
𝑎𝑎
𝑥𝑥 +

𝑐𝑐
𝑎𝑎�

= 𝑎𝑎 ��𝑥𝑥 +
𝑏𝑏

2𝑎𝑎�
2

−
𝑏𝑏2

4𝑎𝑎2
+
𝑐𝑐
𝑎𝑎
� 

And rewriting this a bit [we have jumped steps but make sure you can fill them in!]: 

𝑎𝑎 ��𝑥𝑥 +
𝑏𝑏

2𝑎𝑎�
2

−
𝑏𝑏2

4𝑎𝑎2
+
𝑐𝑐
𝑎𝑎
� = 𝑎𝑎 �𝑥𝑥 +

𝑏𝑏
2𝑎𝑎�

2

− �
𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

4𝑎𝑎
� 

 

 
8 Notice we have also used the fact that the coefficient of 𝑥𝑥2 is positive so the quadratic is a U shape.  
9 We say a root is repeated if it occurs more than once – e.g. (𝑥𝑥 + 2)(𝑥𝑥 + 2) = 0  
10 There are a number of equivalent but slightly different approaches to completing the square when the 𝑥𝑥2  
coefficient is not just 1. We have picked one approach, but you might have seen others in your maths classes. 
You should be comfortable with a range of approaches here. 
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We can then use this expression to derive the quadratic formula and to explore the 
relationship between the formula and aspects of the graph of 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  

Let’s start with deriving the quadratic formula: 

For this, we want to solve 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0  and when we replace the quadratic by its 
completed-square form this becomes: 

  

𝑎𝑎 �𝑥𝑥 +
𝑏𝑏

2𝑎𝑎�
2

− �
𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

4𝑎𝑎
� = 0 

 

which gives 

�𝑥𝑥 +
𝑏𝑏

2𝑎𝑎�
2

= �
𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

4𝑎𝑎2
� 

and hence 

 

𝑥𝑥 +
𝑏𝑏

2𝑎𝑎
 = ±��

𝑏𝑏2 − 4𝑎𝑎𝑐𝑐
4𝑎𝑎2

� 

[noticing here we need both the positive and the negative square roots] which 
rearranges to  

 

𝑥𝑥 =  
−𝑏𝑏
2𝑎𝑎

±
√𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎
 =  

−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐
2𝑎𝑎

 

 

We can relate this to the sketch of 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 : 

The line of symmetry for the graph is at 𝑥𝑥 =  −𝑏𝑏
2𝑎𝑎

  [make sure you can argue why this is 

true] and the distance from this line of symmetry to each of the roots is √𝑏𝑏
2−4𝑎𝑎𝑐𝑐
2𝑎𝑎

 and so 

the distance between the roots must be √𝑏𝑏
2−4𝑎𝑎𝑐𝑐
𝑎𝑎

. See the picture on the next page. 
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Finally for this section let’s remind ourselves of the discriminant condition and how it 
tells us if the graph cuts the 𝑥𝑥-axis [and recall that the discriminant is the 𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 in 
the formula]. Here are the three possible conditions and what they tell us:  

𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 > 0  quadratic has two real distinct roots [cuts 𝑥𝑥-axis at two distinct points] 

𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 = 0  quadratic has one repeated root [touches 𝑥𝑥-axis] 

𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 < 0 quadratic has no real roots11 [never cuts or touches the 𝑥𝑥-axis]  

You should also be able to explain clearly why the discriminant condition works – you 
should be able to explain algebraically using the formula, and also using graph 
sketching and graph shifting. Spend some time now checking all these different 
approaches to dealing with quadratic roots fit clearly together in your mind.  

 

 

 

 

 

 
11 This means the quadratic never crosses the 𝑥𝑥-axis. When you learn about complex numbers, you will 
discover that the quadratic does have roots, i.e. 𝑥𝑥 values that make the quadratic zero; but it turns out that 
these roots don’t exist in the real numbers, and we have to go to a “larger” number system to find them.  
There are all sorts of interesting “number systems” [we are deliberately vague here as to what we mean by a 
“number system” as it can get quite technical and many “number systems” are not really like the numbers you 
are used to when counting on your fingers and toes.]  in maths and some of them have turned out to be 
essential for dealing with higher level physics too: e.g. complex numbers in elementary quantum theory.   
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Exercise  

Start with 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0  

Divide the expression through by 𝑥𝑥2 

You now have a quadratic in 1
𝑥𝑥
 

Use the quadratic formula to show: 

 

1
𝑥𝑥

=  
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑐𝑐
 

And hence that  

 

𝑥𝑥 =  
2𝑐𝑐

−𝑏𝑏 ±  √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐
 

 

Then show this is the same result as that given by the standard quadratic formula. Are 
there any conditions on the equivalence of the two formulae [e.g., can we have 𝑐𝑐 = 0 
for the alternative; and, if not, why not?]?  
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MM1.4.  

Simultaneous equations: analytical solution by substitution, e.g. of one linear and 
one quadratic equation.  

 

 
In this section, we will look at simultaneous equations. We will look at what 
simultaneous equations are and then we will investigate how we can solve them. After 
that, we will look at how the solutions to simultaneous equations fit with the 
corresponding graphs of the equations. 
 
 
Let’s start by stepping back and exploring how we might think about equations and 
their graphs in general terms. 
 
We start by considering the simple [linear] equation 𝑦𝑦 = 𝑥𝑥 + 2 where 𝑥𝑥 is taken from 
the real numbers. This equation is really a quick way of writing out a [very large] set of 
number pairs: for instance, when 𝑥𝑥 = 1, 𝑦𝑦 = 3 so the number pair (1, 3) is in the set; 
as is (2, 4) and (𝜋𝜋,  𝜋𝜋 + 2) and (√2 , 2+√2) etc. In fact, the set of number pairs 
represented by the equation 𝑦𝑦 = 𝑥𝑥 + 2 where 𝑥𝑥 is real is so large that we can never 
write out all the members of the set.12 Nevertheless, it is just a very large set of number 
pairs that all obey the pattern 𝑦𝑦 = 𝑥𝑥 + 2.   
 
In other words, we can think of an equation [once we are given all the possible 𝑥𝑥 values 
– e.g., 𝑥𝑥 is real, or 𝑥𝑥 is real and 𝑥𝑥 > 0 etc., etc. ] as a quick way of summarising a very 
large set of number pairs. We also know there is a very clever way of drawing all these 
number pairs on a diagram – that is we draw the line 𝑦𝑦 = 𝑥𝑥 + 2 and each point on the 
line we draw represents one of the number pairs from the set. This may all seem trivial 
to you but when the idea of drawing pictures [i.e. graphs] of equations was first 
introduced it was a major change for the way people could do and understand 
mathematics – this move from algebra and sets of number pairs to geometry  is 
something we take for granted now but it was not always that way.13 It is very useful 
to get used to trying to understand how anything algebraic you meet can be interpreted 
geometrically and vice versa; sometimes this is not an easy task but when you see 
connections between algebra and geometry as you progress as a mathematician, you 
will find your understanding is greatly enhanced. 
 
Now let’s turn to look at simultaneous equations and to learn what is meant by solving 
them and how to interpret their solutions. 
 
Here are two equations: 
 

𝑥𝑥 + 2𝑦𝑦 =  5 
 

 
12 It is “uncountably infinite”. If you are interested, look up Cantor’s infinities.  
13 The 𝑥𝑥𝑦𝑦 plane, also known as the Cartesian plane, was introduced to mathematics in 1637 by Rene Descartes. 
He first thought of the idea, so we are told, thanks to his watching a fly on a ceiling.  
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2𝑥𝑥 + 𝑦𝑦 = 4  
 
We are going to find what 𝑥𝑥 and 𝑦𝑦 values make both of these equations true at the 
same time [i.e., simultaneously] – that is what we mean by “solving” the equations 
simultaneously. In other words, we are looking for the number pairs that appear in both 
the set of number pairs for 𝑥𝑥 + 2𝑦𝑦 = 5 and the set of number pairs for 2𝑥𝑥 + 𝑦𝑦 = 4. And, 
if we think geometrically, that must be where the graphs of the equations [which are, 
recall, pictures of all the number pairs] cross – because the point where they cross 
must be in both sets. 
 
We will look at three ways of solving these: by substitution; by elimination; and 
graphically. 
 
 
 
By substitution: 

 
We make 𝑥𝑥  the subject of the equation 𝑥𝑥 + 2𝑦𝑦 = 5 to get 𝑥𝑥 = 5 − 2𝑦𝑦  and then we 
replace 𝑥𝑥 in the second equation by 5 − 2𝑦𝑦 : so, 2𝑥𝑥 + 𝑦𝑦 = 4 becomes 2(5 − 2𝑦𝑦) + 𝑦𝑦 =
4. Then simplifying:  10 − 3𝑦𝑦 = 4  so 𝑦𝑦 = 2 and because 𝑥𝑥 = 5 − 2𝑦𝑦 we find that 𝑥𝑥 =
1.  So the solution to the simultaneous equations is 𝑥𝑥 = 1 and 𝑦𝑦 = 2  
 
 
 
By elimination 

 
[This is really like technique 1  but written a little differently]: 

 
We make the number of 𝑥𝑥’s in each equation the same [we could have chosen to do 
this for 𝑦𝑦 instead] 
 
𝑥𝑥 + 2𝑦𝑦 =  5  →  × 2 →    2𝑥𝑥 + 4𝑦𝑦 = 10  
     
Then we have: 
 
2𝑥𝑥 + 4𝑦𝑦 = 10  
2𝑥𝑥 + 𝑦𝑦 = 4  
 
And subtracting the bottom equation from the top one, we get: 
 
3𝑦𝑦 = 6  
 
Which gives 𝑦𝑦 =  2 and then 𝑥𝑥 = 1 as before.  
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Graphically 
 
We draw the graph of each equation and look at the point where they cross: 
 
 
 
 

    
 
 
 
Let’s look now at simultaneous [linear] equations in more general terms. And recall, 
linear equations are ones that have graphs which are straight lines. We are going to 
ask how many solutions are there to a pair of simultaneous linear equations. And we 
are going to answer the question by looking at the different ways we can draw two 
straight lines on the 𝑥𝑥𝑦𝑦 plane.  
 
We can draw two straight lines on the 𝑥𝑥𝑦𝑦 plane in three different ways: 
 
 

23



 
 

 
 
 
 

1. Two lines that are parallel and distinct.  These lines will not cross and so have 
no solutions. Let’s have a quick look at the equations of two such lines: because 
they are parallel, they must have the same gradient so the ratio of 𝑥𝑥 to 𝑦𝑦 in each 
equation must be the same. For example, 𝑦𝑦 + 2𝑥𝑥 = 4   and 𝑦𝑦 + 2𝑥𝑥 =  8.  We 
can see that these lines cannot have any common 𝑥𝑥𝑦𝑦 values as there can’t be 
𝑥𝑥 𝑦𝑦 values such that 𝑦𝑦 + 2𝑥𝑥 adds to both 4 and to 8 ! 
 
 

2. Two lines are parallel and the same. In this case every 𝑥𝑥𝑦𝑦 pair is a solution as 
we are really only writing the equation of one line twice. For instance: 𝑦𝑦 + 2𝑥𝑥 =
4 and 2𝑦𝑦 + 4𝑥𝑥 = 8. 
 
 

3. Two lines that are not parallel. Here the lines will have to cross exactly once 
[convince yourself this is obvious 14 ] and so these sorts of simultaneous 
equations will always have one solution.  

 
 
 
 
So far, we have explored linear simultaneous equations What about looking at 
simultaneous equations where one is linear, and one is a quadratic ?  

 
 
 
 
 
 
 
 
 
 
 

 
14 Remember, we are in two dimensions. The situation gets a little more complicated in three dimensions. But 
we do not ask you to deal with three dimensions in the TMUA. Nevertheless, do  think about all the possible 
cases for two lines in three dimensions.  
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We can start to get a picture of the possibilities by considering sketches of lines and 
quadratics. There are three possibilities: 

 
1. Line crosses quadratic giving two distinct solutions. 

 

                                       
2.  Line is tangent to quadratic giving one [repeated] solution. 

 

                                   
 

3. Line never crosses quadratic giving no [real15] solutions. 
 

 
 

15 There will be, in this case,  complex solutions but this is outside the scope of the TMUA/ESAT 

y

x
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Solving simultaneous equations where one is linear and one is quadratic is simple: we 
eliminate the 𝑦𝑦 values [or 𝑥𝑥 values if easier] and solve the resulting quadratic equation 
using one of the techniques we met earlier in these notes. Factorizing or the 
discriminant conditions on the resulting quadratic [resulting from the elimination 
process]  will tell you quickly which of the three cases for quadratic plus linear you are 
dealing with. 
 
Here is an example: 
 
Example 
 
Solve 𝑦𝑦 = 𝑥𝑥2 + 3𝑥𝑥 + 2   and 𝑦𝑦 = 𝑥𝑥 + 1 
 
To solve these, we eliminate 𝑦𝑦 to give 
 
𝑥𝑥2  + 3𝑥𝑥 + 2 = 𝑥𝑥 + 1  
 
And rearranging  
 
𝑥𝑥2 + 2𝑥𝑥 + 1 = 0  
 
Which factorises to  
 
(𝑥𝑥 + 1)2  = 0    
 
so there is a single solution of 𝑥𝑥 =  −1 and 𝑦𝑦 = 0 and this must be when the line is 
tangent to the quadratic.  
 
Exercise 
 
Finally, some things to think about: 
 
What are the possible solutions for a quadratic and a cubic simultaneous equation. Is 
it possible to have a situation with no real solutions [justify your answer both 
algebraically and using graphs16 ]? 
 
Find a condition on 𝑚𝑚, 𝑐𝑐, 𝑏𝑏, and 𝑑𝑑  for 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 ,𝑚𝑚 ≠ 0, 𝑐𝑐 ≠ 0  to be tangent to 𝑦𝑦 =
𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑑𝑑, 𝑏𝑏 ≠ 0,𝑑𝑑 ≠ 0 
 
 

  

 
16 Hint [stop reading if you don’t want a hint]: which graphs generally get steeper faster, quadratics or cubics? 
Why ? 
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M M1.5.  

Solution of linear and quadratic inequalities. 

  

 

The most important things to be aware of when dealing with inequalities is that they 
do NOT behave quite the same way as equations with equal signs. With inequalities 
you can add and subtract on both sides as much as you want, but you cannot multiply 
and divide both sides [or raise both sides to an even power, or apply certain functions 
to both sides] without first checking that what you are multiplying or dividing by is 
positive and/or preserves the inequality: 

Here are a few examples : 

 

•  −7 < 5   is true but multiply both sides by −1 to get  7 < −5 which is clearly 
false.  
 

• −2 < −1 is true but squaring both sides gives 4 < 1 which is clearly false. 
 

• −2 < −1 is true and cubing both sides gives −8 < −1 which is also true. 
 

• −8 < −4 is true but dividing both sides by −2 gives 4 < 1 which is clearly false. 
 

• 30 <  60 is true but cos 30 < cos 60  is false while sin 30  < sin 60 is true.  

 

In general, when dealing with inequalities, it is important to make sure that the way 
you are manipulating them does not turn a true statement into a false one or generate 
extra [incorrect] solutions if you are dealing with algebra.   
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Let’s have  a look at several examples to illustrate the sorts of things you need to think 
about as you solve inequalities: 

Example 1 

Solve   3𝑥𝑥 + 2 ≤  𝑥𝑥 + 5 

We can answer this by simple rearranging: 

3𝑥𝑥 − 𝑥𝑥 ≤   5 − 2  

2𝑥𝑥 ≤  3  

𝑥𝑥 ≤ 3
2
  

 

Example 2 

Solve  𝑥𝑥2 +  5𝑥𝑥 +  6 ≥ 0 

We will solve this using graph and some algebra. 

First, we factorise the left-hand side: 

(𝑥𝑥 + 2)(𝑥𝑥 + 3) ≥ 0 

Then we roughly sketch the quadratics and find out what 𝑥𝑥 values make the graph sit 
above the 𝑥𝑥-axis [that is ≥ 0] 

                                  
 

And from the diagram we can see the solution must be  𝑥𝑥 ≤ −3  or 𝑥𝑥 ≥ −2  
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Example 3 

Solve: 

2𝑥𝑥 + 5
𝑥𝑥 + 3

 > 1  

It is very tempting [but not a good strategy] to multiply both side of this expression by 
𝑥𝑥 + 3. However, as 𝑥𝑥 + 3 is negative for some values of 𝑥𝑥 the inequality sign will then 
be the wrong way around for some values of 𝑥𝑥 and lead to a slight mess. Instead, we 
need to adjust our algebraic approach slightly and the best thing to do is to multiply 
both sides by (𝑥𝑥 + 3)2 which we know is always positive for all real 𝑥𝑥 values and so it 
will not affect the inequality sign:  

 

2𝑥𝑥 + 5
𝑥𝑥 + 3

 × (𝑥𝑥 + 3)2  >  1 × (𝑥𝑥 + 3)2  

 

Giving [note we rearrange rather than multiply out as we have a common factor we 
can extract] :     

(2𝑥𝑥 + 5)(𝑥𝑥 + 3) − (𝑥𝑥 + 3)2 > 0 

And on simplifying 

 

(𝑥𝑥 + 3)(2𝑥𝑥 + 5 − 𝑥𝑥 − 3) > 0 

(𝑥𝑥 + 3)(𝑥𝑥 + 2) > 0  

 

Which is solved as in example 2 above?  

 

Make sure you are familiar with various techniques for solving inequalities – there are 
lots of ways of approaching things and you might have learnt some that we have not 
mentioned above – the main approaches tend to be via algebra and graphs or via 
using number lines. 

 

 

29



 
 

As an aside, it is useful to know how to write ranges correctly, particularly as it is 
common to see incorrect expressions.  

Let’s look at a couple of howlers: 

 

1 < 𝑥𝑥 < −5  

in this case, it is clear what is meant but we tend to read strings of inequalities as a 
single “sentence” and this expression is really two separate statements scrunched 
together [it is presumably meant to be "1 < 𝑥𝑥  or 𝑥𝑥 < −5" ]. It is, of course, ok to write 
things like −3 < 𝑥𝑥 < 5 as the whole expression makes sense, and it is true also that 
−3 < 5 

 

Here is another one: 

−2 < 𝑥𝑥 and 𝑥𝑥 < −4   

this is [presumably17] incorrect as there are no 𝑥𝑥 values that satisfy both −2 < 𝑥𝑥 and 
𝑥𝑥 < −4 [look at how “and” is used in the Notes on Logic and Proof  that we have written 
for TMUA paper 2].  Here, it would have been better to write either:  " − 2 < 𝑥𝑥 or 𝑥𝑥 <
−4" and perhaps even better “𝑥𝑥 < −4 or −2 < 𝑥𝑥” and sometimes just “ 𝑥𝑥 < −4, −2 <
𝑥𝑥”. Our preference would be to use “or” .    

 

 

 

Let’s now turn to look at inequalities involving the modulus sign. We will use some 
sketches in this section, but we will  postpone a detailed look at modulus graph 
sketching until later. 

We start by looking at a simple modulus function. We are going to look at. 

 𝑦𝑦 = |𝑥𝑥 − 3|. 

Recall first that |𝑥𝑥 − 3| means “the positive value of 𝑥𝑥 − 3. So when 𝑥𝑥 = 5 then 𝑦𝑦 = 2 
and when 𝑥𝑥 = −4 then 𝑦𝑦 =  7. 

 

 

 
17 Unless the intention was to write “no solutions” in a silly manner. 
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We can sketch this18: 

                          

 

But the best way to think about the meaning of |𝑥𝑥 − 3| is as a measure of the [positive] 
distance of 𝑥𝑥 from 3 on the number line. Keep this idea in mind as we look at some 
inequalities involving the modulus. 

 

Let’ start by solving the inequality: 

|𝑥𝑥 − 3| < |𝑥𝑥 − 5| 

We can solve this graphically by sketching both  𝑦𝑦 = |𝑥𝑥 − 3|  and 𝑦𝑦 = |𝑥𝑥 − 5|  and 
working out for which 𝑥𝑥 values the graph of 𝑦𝑦 = |𝑥𝑥 − 3| is below [or the 𝑦𝑦 values are 
less than] the graph of 𝑦𝑦 = |𝑥𝑥 − 5| 

                                 

 
18 If you are not sure how to sketch modulus functions, the look at the section of graph sketching below.  
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And from the diagram, we see that the 𝑥𝑥 values that make the inequality correct [or 
true] are 𝑥𝑥 < 4 

Another way of thinking of the inequality  |𝑥𝑥 − 3| < |𝑥𝑥 − 5|  is asking what are the 𝑥𝑥 
values that are closer to 3 than they are to 5. And a little thought leads rapidly to the 
solution 𝑥𝑥 < 4 

How might we use these ideas to solve slightly more complicated inequalities? For 
instance, what about the inequality |2𝑥𝑥 − 4| < |𝑥𝑥 + 2|  which we can rewrite as 
2|𝑥𝑥 − 2| < |𝑥𝑥 + 2|. We can solve this with a sketch.  

 

                               

The inequality asks for the 𝑥𝑥 values for which the graph of  |2𝑥𝑥 − 4|  sits “below” [less 
than] the graph of  |𝑥𝑥 + 2| and this gives  2

3
< 𝑥𝑥 < 6 

It is worth spending a moment to look at how we found the values 2
3
 and 6 from the 

graphs.  If you are not sure of how we get some of the equations here, you should 
read the section on modulus graph sketching later in these notes.  

To find the value 2
3
 we use the sketch to guide us as it tells us we need to solve 𝑥𝑥 +

2 =  −(2𝑥𝑥 − 4) where the minus sign arises because we are looking at the “flipped” 
part of 𝑦𝑦 = |2𝑥𝑥 − 4|.  And to find the value 6 we solve 2𝑥𝑥 − 4 = 𝑥𝑥 + 2 

Or we can think about it as before as asking when is twice the distance of 𝑥𝑥 from 2 
less than the distance of 𝑥𝑥 from −2.  A little thought [more than before] gives us the 
answer:  2

3
< 𝑥𝑥 < 6 
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Comment 

There is a wide range of inequalities we could look at in the TMUA/ESAT. What is 
important is that you understand what inequalities are, and that you have a set of 
techniques to solve them – relying just on algorithms for solving without understanding 
is dangerous and limiting. We have looked at a few inequalities above and also looked 
at some [but not all] techniques for solving them.   
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MM1.6.  

Algebraic manipulation of polynomials, including: 

a. expanding brackets and collecting like terms 
b. factorisation and simple algebraic division (by a linear polynomial, including those 
of the form a x + b, and by quadratics, including those of the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐)  
c. use of the Factor Theorem and the Remainder Theorem 
 
 

In the TMUA/ESAT we expect you to be able to multiply our brackets and collect like 
terms; and recall collecting ”like terms” means collecting all the constants together, 
and separately collecting all the 𝑥𝑥 terms together, and separately the 𝑥𝑥2 terms, and 
separately the 𝑥𝑥3  terms, and so on.  

You should also be able to factorise simple algebraic expression – certainly quadratics 
and other expressions with common factors. You should also be able to factorise 
cubics using the factor theorem [see below]. 

In addition, make sure you can perform simple algebraic [long] division – you should 
be able to perform long division by linear and quadratic expressions. Here is an 
example: 
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Example  

What is 𝑥𝑥4 + 2𝑥𝑥2 + 3𝑥𝑥 − 4  divided by 𝑥𝑥 + 3 ? 

We write this out in a grid [below this green box]  to make things easier to follow – and 
notice we have a column for each power of 𝑥𝑥 and we have also included 0𝑥𝑥3 in our 
grid – this is a good idea as otherwise it is easy to make errors as you work through 
the long division. We also keep the same powers of 𝑥𝑥 in the same vertical columns 
throughout [we do this for the top line [the 𝑥𝑥3 − 3𝑥𝑥2 + 11𝑥𝑥 − 30 line] for consistency 
but it is not so important there and you might prefer to shift that line to the left so that 
the 𝑥𝑥3 appears above the 𝑥𝑥4 etc.]  

  𝑥𝑥3 −3𝑥𝑥2 +11𝑥𝑥 −30 

𝑥𝑥 + 3 𝑥𝑥4 +0𝑥𝑥3 +2𝑥𝑥2 +3𝑥𝑥 −4 

 𝑥𝑥4 +3𝑥𝑥3 ↓ ↓ ↓ 

 0𝑥𝑥4 −3𝑥𝑥3 +2𝑥𝑥2 +3𝑥𝑥 −4 

  −3𝑥𝑥3 −9𝑥𝑥2 ↓ ↓ 

  0𝑥𝑥3 +11𝑥𝑥2 +3𝑥𝑥 −4 

   +11𝑥𝑥2 +33𝑥𝑥 ↓ 

   0𝑥𝑥2 −30𝑥𝑥 −4 

    −30𝑥𝑥 −90 

    0𝑥𝑥 86 
 

Notice that division involves just first terms at each stage, but when we multiply back 
to get what we need to subtract at each stage, then we use all the terms. We stop the 
long division when we get 86 as 𝑥𝑥 + 3 does not divide into 86. In fact, 86 is our 
remainder.  

This long division tells us that when 𝑥𝑥4 + 2𝑥𝑥2 + 3𝑥𝑥 − 4 is divided by 𝑥𝑥 + 3 the answer 
is 𝑥𝑥3 − 3𝑥𝑥2 + 11𝑥𝑥 − 30 with a remainder of 86.We can write this as follows: 

𝑥𝑥4 + 2𝑥𝑥2 + 3𝑥𝑥 − 4 = (𝑥𝑥3 − 3𝑥𝑥2 + 11𝑥𝑥 − 30)(𝑥𝑥 + 3) + 86 
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Study this carefully and make sure you can see exactly how it fits with our grid above 
and how it fits with your normal understanding of division [e.g., 11 divided by 4 is 2 
remainder 3 so that we can write 11 =  2 ×  4 +  3 ] 
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Factor and remainder theorem.  

The factor theorem appears in many advanced school mathematics specifications, but 
the remainder theorem appears in fewer, so you might not have met both theorems in 
your maths classes. We have decided to keep both theorems in the TMUA/ESAT 
specification as they are closely related to each other and easy to understand. 

We will start by looking at the factor theorem. For this we will use the notation 𝑓𝑓(𝑥𝑥) 
and you will need to know what is meant by a factor in algebra. Let’s start by refreshing 
our understanding of these two things.  

First, what does it mean to be a factor of an algebraic expression? Here are a couple 
for examples:  

Consider (𝑥𝑥 + 2)(𝑥𝑥 − 3) then both (𝑥𝑥 + 2) and (𝑥𝑥 − 3) are factors but, for instance, 
(2𝑥𝑥 + 5) isn’t.  

Consider (2𝑥𝑥 − 7)(𝑥𝑥2 + 3𝑥𝑥 + 7) then both (2𝑥𝑥 − 7) and (𝑥𝑥2 + 3𝑥𝑥 + 7) are factors. 

In general, one algebraic expression is a factor of another of it divides into it exactly - 
that is, without any remainder. This is just like the idea of factors for numbers. 

Next, we remind ourselves that 𝑓𝑓(𝑥𝑥) [or 𝑔𝑔(𝑥𝑥) or ℎ(𝑥𝑥) etc] is just another notation for a 
function of 𝑥𝑥, or really just an algebraic expression. We often write 𝑓𝑓(𝑥𝑥) instead of 𝑦𝑦 
when we are dealing with algebraic expression. So, for instance we could write 𝑓𝑓(𝑥𝑥)  =
 𝑥𝑥2 + 3𝑥𝑥 + 2. This notation is useful as we can then indicate the value of the expression 
for different 𝑥𝑥values. For instance,𝑓𝑓(2) means the value of the expression that is 
represented by 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 = 2 ; so when 𝑓𝑓(𝑥𝑥)  =  𝑥𝑥2 + 3𝑥𝑥 + 2, then 𝑓𝑓(2)  =  22 +
3 × 2 + 2 = 12. 

Now let’s use our knowledge of factors and the notation 𝑓𝑓(𝑥𝑥) to set up and explain the 
factor theorem: 

Let’s start with 𝑓𝑓(𝑥𝑥)  =  (𝑥𝑥 − 2)(𝑥𝑥 + 7).  We know that both (𝑥𝑥 − 2) and (𝑥𝑥 + 7) are 
factors of 𝑓𝑓(𝑥𝑥). Let’s look at the values of 𝑓𝑓(2) and 𝑓𝑓(−7). In both cases, a quick 
calculation shows that each has a value 0. This leads to the factor theorem which 
states: 

If 𝒇𝒇(𝒙𝒙) is a polynomial in 𝒙𝒙,  then 𝒇𝒇(𝒂𝒂)  =  𝟎𝟎 if and only if  𝒙𝒙 − 𝒂𝒂 is a factor of 𝒇𝒇(𝒙𝒙) 

Before we look at how we can use the factor theorem, we will make a few comments. 
First, notice that the factor theorem is applicable only to polynomials [and in 
TMUA/ESAT that means polynomials with real coefficients]. And also notice it is an “if 
and only if” statement. That means we can use it two ways: 

1. We can find that 𝑓𝑓(𝑎𝑎)  =  0 and then we know that (𝑥𝑥 − 𝑎𝑎) is a factor of 𝑓𝑓(𝑥𝑥) 
 

2. We can start with (𝑥𝑥 − 𝑎𝑎) as a factor of 𝑓𝑓(𝑥𝑥) and then we know that 𝑓𝑓(𝑎𝑎) = 0 
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3. You should realise that you know the factor theorem in a slightly different form: 

the factor theorem links the roots of the equation [when the graph crosses the 
𝑥𝑥-axis – that is the solution to 𝑓𝑓(𝑥𝑥) = 0 ] with the factors you get when you 
factorize an expression into brackets. So, for instance, if you are asked to find 
the roots of 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 4)(𝑥𝑥 − 7)  [in other words find where 𝑦𝑦 = (𝑥𝑥 + 4)(𝑥𝑥 −
7) crosses the 𝑥𝑥-axis] you know you have to solve (𝑥𝑥 + 4)(𝑥𝑥 − 7) = 0. So you 
are asking what 𝑥𝑥 values make 𝑓𝑓(𝑥𝑥)  = 0 and they must be the 𝑥𝑥 values that 
make (𝑥𝑥 + 4) = 0 or (𝑥𝑥 − 7) = 0.   Read the factor theorem again to make sure 
you see the connections. 

The factor theorem itself should be fairly “obvious”. It is useful in form 1 above as it 
helps us to factorise polynomial expression [mostly quadratics and cubics]. Here are 
some examples of using the factor theorem : 

Example 1 

Factorise 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3𝑥𝑥 + 2  

We will look at this in a little more detail than usual.  First we note that if the factors 
are (𝑥𝑥 − 𝑎𝑎) and (𝑥𝑥 − 𝑏𝑏)  then 𝑎𝑎𝑏𝑏 = 2 so we only consider 𝑎𝑎 = ±  1 and 𝑎𝑎 = ± 2 [once 
we know 𝑎𝑎 we can immediately work out 𝑏𝑏.]19 

Next, we use the factor theorem to work out what 𝑎𝑎 might be by a sort of “trial and 
error” process. We want to find an 𝑎𝑎 such that 𝑓𝑓(𝑎𝑎)  =  0 and we see that as all the 
bits of the quadratic are positive, then it is best to try negative values for 𝑎𝑎. We start 
with 𝑎𝑎 = −1 and work out 𝑓𝑓(−1)  =  0 so we know that (𝑥𝑥 −  −1) is  a factor, ie (𝑥𝑥 + 1) 
is a factor. This immediately gives 𝑏𝑏 = −2 and so the other factor is (𝑥𝑥 + 2) 

 

Example 2 

Factorise 𝑓𝑓(𝑥𝑥) =  𝑥𝑥3 + 𝑥𝑥2 − 5𝑥𝑥 + 3 

Here, using the same idea as in Example 1, we can see that this probably11 factorises 
to (𝑥𝑥 + 𝑎𝑎)(𝑥𝑥 + 𝑏𝑏)(𝑥𝑥 + 𝑐𝑐)  with 𝑎𝑎𝑏𝑏𝑐𝑐 = 3 [the constant term in the cubic].  So, we should 
start by using the factor theorem using factors of 3 [i.e., 1, −1, 3 and −3]. 

We start with looking at 𝑓𝑓(1) = 13 + 12 − 5 × 1 + 3 = 0  so we know that (𝑥𝑥 − 1) is a 
factor.  

Now we could continue to check −1, 3 and −3 and if you were to do so, you would 
find that (𝑥𝑥 + 3) is a factor because 𝑓𝑓(−3) = 0. As there are no other factors of 3 and 

 
19 Of course, we are assuming it CAN be factorised into nice brackets with integers!! 
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we have found only two factors then it looks like something has gone wrong. Actually, 
it hasn’t, one factor is repeated, and the answer is (𝑥𝑥 − 1)(𝑥𝑥 − 1)(𝑥𝑥 + 3). 

There is an alternative way to proceed. Once we know that (𝑥𝑥 − 1) is a factor we can 
use long division [or factorising by inspection – we have not included that technique in 
this notes] to find a quadratic factor of 𝑓𝑓(𝑥𝑥) =  𝑥𝑥3 + 𝑥𝑥2 − 5𝑥𝑥 + 3 and then factorise that 
quadratic. 

Long division gives: 

  𝑓𝑓(𝑥𝑥) =  𝑥𝑥3 + 𝑥𝑥2 − 5𝑥𝑥 + 3 = (𝑥𝑥 − 1)(𝑥𝑥2 + 2𝑥𝑥 − 3) = (𝑥𝑥 − 1)(𝑥𝑥 − 1)(𝑥𝑥 + 3) 

 

Now we have an idea of what the factor theorem says and how to use it, we will turn 
to look at the remainder theorem.  Recall above when we undertook an algebraic long 
division, we obtained the following expression 

𝑓𝑓(𝑥𝑥) =  𝑥𝑥4 + 2𝑥𝑥2 + 3𝑥𝑥 − 4 = (𝑥𝑥3 − 3𝑥𝑥2 + 11𝑥𝑥 − 30)(𝑥𝑥 + 3) + 86 

If we use this to calculate 𝑓𝑓(−3) we see from the final expression that the answer is 
86, the remainder we obtained when we divided 𝑓𝑓(𝑥𝑥) by (𝑥𝑥 + 3). This, in essence, is 
that the remainder theorem says. In this case it says that the remainder when 𝑓𝑓(𝑥𝑥) is 
divided by (𝑥𝑥 + 3) is 𝑓𝑓(−3). 

Now we have a rough idea of what the remainder theorem says, let’s look in more 
general terms so we can build up a good grasp of the remainder theorem for a general 
polynomial. Consider the polynomial 𝑓𝑓(𝑥𝑥)  divided by (𝑥𝑥 + 𝑏𝑏)  for some non-zero 
[integer20] 𝑏𝑏, the remainder would have to be just a number21 so we can write a general 
expression for this division as follows: 

𝑓𝑓(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥) (𝑥𝑥 − 𝑏𝑏)  + 𝑅𝑅 

Where 𝑔𝑔(𝑥𝑥) is some unique polynomial22 and 𝑅𝑅 is the remainder.23   

And from this expression we immediately see by putting 𝑥𝑥 = 𝑏𝑏 that  

𝑓𝑓(𝑏𝑏) =  𝑔𝑔(𝑏𝑏)(𝑏𝑏 − 𝑏𝑏) + 𝑅𝑅 = 𝑔𝑔(𝑏𝑏) × 0 + 𝑅𝑅 = 𝑅𝑅 

 
20 𝑏𝑏 does not have to be an integer, but it is easier here to assume it is. Most cases of using the remainder 
theorem will involve 𝑎𝑎 as an integer or a fraction; fraction in the case, for instance, of diving by (2𝑥𝑥 + 3) 
21 Think about how algebraic long division works. If you get a 𝑝𝑝𝑥𝑥 + 𝑞𝑞 during long division when dividing by 
something like 𝑥𝑥 − 3  [for example] then you can always complete  a further step in the long division. It is only 
when you reach a number alone in the long division that you can no longer divide by something like 𝑥𝑥 − 3 
22 Can you explain why it is unique? 
23 As an aside, you should be able to argue that the highest power of 𝑥𝑥 in 𝑔𝑔(𝑥𝑥) is one less than the highest power 
of 𝑥𝑥 in 𝑓𝑓(𝑥𝑥)  
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So, we can construct a version of the Remainder Theorem: 

 

            When a polynomial 𝒇𝒇(𝒙𝒙) is divided by (𝒙𝒙 − 𝒃𝒃) the remainder is 𝒇𝒇(𝒃𝒃)  

 

This also works for division by (𝑝𝑝𝑥𝑥 − 𝑞𝑞). What do you think the reminder is in this case 
and can you explain why?24 

We can also look at general division here, for instance, when we divide a polynomial 
𝑓𝑓(𝑥𝑥) by a quadratic 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐   [or even (𝑥𝑥 − 𝑝𝑝)(𝑥𝑥 − 𝑞𝑞)].  Before we explore this 
briefly, have  a think about what you expect the general form of the remainder to be in 
this case… 

 

Here is the general case for quadratics  

 

𝑓𝑓(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥) (𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐)  +  𝑚𝑚𝑥𝑥 + 𝑛𝑛 

 

And you should be able to explain that the highest power of 𝑥𝑥 in 𝑔𝑔(𝑥𝑥) is two less than 
the highest power of 𝑥𝑥 in 𝑓𝑓(𝑥𝑥); and you should also be able to explain [and extend the 
concept] that the highest power of 𝑥𝑥 in the remainder is [at most25] one less than the 
highest power of what we are dividing 𝑓𝑓(𝑥𝑥) by.  

 

What is the relationship between the factor theorem and the remainder theorem? In 
simple terms, the factor theorem is a special case of the remainder theorem. Simply 
put: if the remainder on dividing 𝑓𝑓(𝑥𝑥) by (𝑥𝑥 − 𝑏𝑏) is zero, then (𝑥𝑥 − 𝑏𝑏) must be a factor 
of 𝑓𝑓(𝑥𝑥). Clever. 

 

 

 
24 When a polynomial 𝑓𝑓(𝑥𝑥) is divided by (𝑝𝑝𝑥𝑥 − 𝑞𝑞) the remainder is 𝑓𝑓(𝑞𝑞/𝑝𝑝)  and this is because we can write 
𝑓𝑓(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥) (𝑝𝑝𝑥𝑥 − 𝑞𝑞)  + 𝑅𝑅  so we need to find what 𝑥𝑥 makes 𝑝𝑝𝑥𝑥 − 𝑞𝑞 = 0 and then substitute that value into 
𝑓𝑓(𝑥𝑥) 

25 It could be that 𝑚𝑚 = 0. And if both 𝑚𝑚 and 𝑛𝑛 are zero then the quadratic is  a factor of 𝑓𝑓(𝑥𝑥) 
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Exercise 

The degree of a polynomial is the highest power of 𝑥𝑥 that appears there. So, the 
degree of a quadratic is two, and that of a cubic is three, and so on. Here is a general 
expression for dividing some polynomial 𝑓𝑓(𝑥𝑥) by a polynomial ℎ(𝑥𝑥): 

𝑓𝑓(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥)ℎ(𝑥𝑥)  +  𝑟𝑟(𝑥𝑥) 

What can you say about the degree of ℎ(𝑥𝑥), 𝑔𝑔(𝑥𝑥) and 𝑟𝑟(𝑥𝑥) in this expression. Be very 
careful about how you express your answer.  
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MM1.7.  
Qualitative understanding that a function is a many-to-one (or sometimes just a one-
to-one) mapping. 

Familiarity with the properties of common functions, including  𝑓𝑓(𝑥𝑥) = √𝑥𝑥  (which 
always means the ‘positive square root’) and  𝑓𝑓(𝑥𝑥) = |𝑥𝑥| 
 

 

Let’s start exploring what is meant by a “function”. In simple terms a function is a 
mapping [or, better, it is a rule] from a set of input values to a set of output values.  Not 
all algebraic expression are functions and, in this section, we will clarify what special 
features make something a function. 

First, let’s look at input and output values. We will be a little loose on notation here26 
and so we will use 𝑓𝑓(𝑥𝑥) to denote an algebraic expression and we will usually combine 
this with an expression for how the rule takes input values [the 𝑥𝑥 values] to output 
values such as 𝑓𝑓(𝑥𝑥) =  𝑥𝑥2 + 3 . And we will often also need to specify what values we 
are allowed to input into the function – usually this is just all 𝑥𝑥 values on the 𝑥𝑥-axis 
which we call the “real numbers”. We can be even more casual about things and write 
“𝑦𝑦 = 𝑥𝑥2 + 3” and whilst this is not strictly perfect, it is ok as mathematicians will know 
what you are talking about.27  

Now we have a rough idea of how our notation works, we can ask if ALL different 
expressions that we can construct using 𝑥𝑥 are functions. So, is 𝑓𝑓(𝑥𝑥)  =  𝑥𝑥2 a function, 
is 𝑓𝑓(𝑥𝑥) =  ±√𝑥𝑥 a function , is 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 3𝑥𝑥3 − 17𝑥𝑥 + 242  a function? 

The answer is that not all these expressions are allowed to be called functions. We 
need one more restriction: an algebraic expression is a function, if for any given 𝑥𝑥 
value [in the collection of permitted inputs] the expression gives only one output value. 
So 𝑓𝑓(𝑥𝑥)  =  𝑥𝑥2 is a function as any 𝑥𝑥 value only gives one output value. But 𝑓𝑓(𝑥𝑥) =
 ±√𝑥𝑥  is not a function as a single 𝑥𝑥 value leads to more than one output value28: for 
instance, if we use 𝑥𝑥 = 16 we get 𝑓𝑓(𝑥𝑥)  =  4 or −4.  

 

 

 

 
26 Strictly a function is denoted by 𝑓𝑓 or 𝑔𝑔 etc and the value of the function is denoted by 𝑓𝑓(𝑥𝑥) or 𝑔𝑔(𝑥𝑥) etc ; and 
sometimes functions are written in a different notation as 𝑓𝑓: 𝑥𝑥 →  𝑥𝑥2 + 3, 𝑥𝑥 ∈ ℝ 
27 In TMUA/ESAT we try to be as accurate as possible in the way we word our questions. We also make sure 
that the care we take does not get in the way of your understanding what we are asking. So we might talk 
about “ the function f defined by…” or we might just talk about “the function f(x) =…” depending on the needs 
of the question. 
28 There is one exception: when 𝑥𝑥 = 0 
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So here are the things we need to define  a function 

1. A rule [an algebraic expression] that maps input values to output values 
 

2. A clear list of what we are allowed to input into the rule [this is called the Domain 
of the function29] 
 

3. We need to be sure that for each input value in the domain there is only one 
output value. 

 

We will look in a little more detail and point 2 and point 3 : 

 

Point 2: usually the Domain of a function is just assumed to be the whole of the 𝑥𝑥-axis 
– that is all the real numbers. And often, if it is assumed that the Domain is just the 
whole 𝑥𝑥-axis, then it tends not to be mentioned explicitly. Sometimes you are expected 
to know the domain of functions so they are not mentioned [an example would be the 
log function - its domain is just positive 𝑥𝑥 values]. And sometimes the domain of a 
function is deliberately restricted and then it is always mentioned explicitly [for 
instance, we could say 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3  for 𝑥𝑥 ≥ 2 ] . In the TMUA/ESAT we tend to 
mention the domain most of the time and you should spend a moment each time 
thinking about why the domain is as mentioned [usually it is just to make the maths as 
precise as we can, but this is not always the reason, so you should always look at the 
details we put in a question]. 

 

Point 3. Whilst there is only one output for each input, it does not follow that two 
different inputs must have different outputs. For instance, consider 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  and 
𝑔𝑔(𝑥𝑥) = 𝑥𝑥3. These are both functions – you should check this for yourself using the 
above definitions. For 𝑔𝑔(𝑥𝑥) = 𝑥𝑥3 each 𝑥𝑥 input value gives us a unique output, so no 
two input values give the same output. But for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 this is not true as both 𝑓𝑓(2) =
4  and 𝑓𝑓(−2) = 4 .  Even though two different 𝑥𝑥 values give the same output here for 
𝑓𝑓(𝑥𝑥) we know that 𝑓𝑓(𝑥𝑥) is a function as each 𝑥𝑥 input value only gives us one output.  
Functions where each output is unique [occurs only once] are known as one-to-one 
functions, and any functions that have the same output for [at least some] different 
input values are known as many-to-one.  

  

 
29 The term “domain” for function is not on the TMUA/ESAT specification so you will not see it in the test. 
Nevertheless, you should know what it means as it is a very common term. Also, we recommend you explore 
the concept of range [You could also explore the idea of codomain but that can get a bit muddled when you 
read about it, so it is probably best left alone for the moment. ]  
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There is another way to think about functions which is easier than all the formal stuff 
above, and that is to consider their graphs.  You can tell if an expression is a function 
from its graph by looking to see if there are any 𝑥𝑥 values that have more than one 𝑦𝑦 
value – if they do then they are not functions. In other words, any vertical line drawn 
on the graph [through an input 𝑥𝑥 value] will only cross the function once. 

Here are a few diagrams to help you see what we mean.  

 

 

  

 

In addition, once we know we have a function using our “vertical line test” we can see 
if it is one-to-one or many-to-one.30 If every horizontal line only crosses the function at 
most in one place then it is one-to-one, but if we can find a horizontal line that crosses 
the function more than once, then we have a many-to one function.  

Here are diagrams to help you see what we mean: 

 
30 The idea of one-to-one and many-to-one is useful when exploring inverses of functions. Only one-to-one 
functions have inverses because we require the inverse of a function also to be a function. Note that the 
TMUA/ESAT does not require you to know in general about inverse functions. 
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Let’s now look at a  couple of functions that you will probably meet in the TMUA/ESAT.  
We will also meet some functions later in these notes and there you should think 
carefully about domains – for instance, in the logarithm section and in the trigonometry 
section. 

Here we will look briefly at 𝑓𝑓(𝑥𝑥) =  √𝑥𝑥  and 𝑓𝑓(𝑥𝑥)  = |𝑥𝑥| 

First  𝑓𝑓(𝑥𝑥) =  √𝑥𝑥   always means the positive square root of 𝑥𝑥. This is a standard maths 
convention, and we adopt it without comment in the TMUA/ESAT – whenever we use 
the square root sign, we will ALWAYS mean the positive square root and we will not 
comment on that in a question – you are expected to know it!  The other thing to notice 
with this function, and again this is often just assumed, is that the input values will only 
be the positive real numbers and zero [i.e., 𝑥𝑥 ≥ 0]. 31   

Here is the graph of 𝑦𝑦 = √𝑥𝑥 [you can see using horizontal and vertical line test that it 
is one-to-one] 

                             

 
31 Complex numbers , which you might have met, are not on the TMUA/ESAT specification and we mostly 
ignore their existence. Occasionally when their existence might add complications to a question, we tend to 
add a comment to restrict the question to real numbers. 
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And now 𝑓𝑓(𝑥𝑥)  = |𝑥𝑥|  or “the modulus function”. This takes the positive value of 
whatever is inside the vertical straight lines. So |7| = 7, |−2| = 2, |0| = 0 and so on.  
You should make sure you can deal with expressions including the modulus both 
algebraically and graphically.   

As an aside:  a quick way to sketch 𝑦𝑦 = |𝑓𝑓(𝑥𝑥)| is to sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and then reflect 
everything that is below the 𝑥𝑥-axis in the 𝑥𝑥-axis but leave everything above the 𝑥𝑥- axis 
alone. Here is a diagram to show what we mean: 
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MM2. Sequences and series 
MM2.1.  

Sequences, including those given by a formula for the 𝑛𝑛th term and those generated 
by a simple recurrence relation of the form 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛)  

 

 

For this MM2 section, there are three terms that you should know: series, sequence 
and progression. A sequence is an ordered list of numbers [often going on forever]; a 
series is a sum of a sequence; and a progression is just a general term that sits 
somewhere in between series and sequence.  In the TMUA/ESAT we tend to use the 
term “progression” as a “catch-all” term because it is more neutral and helps us word 
question in way that makes them easier to understand.32 

 

We expect you to be able to write out sequences of numbers given simple rules and 
to spot patterns in these sequences and then use the patterns to make further 
deductions. The most important thing when writing out a sequence that follows a rule 
and looking for patterns is knowing how many terms to write and how to tell when a 
pattern in the sequence is emerging. 33 

 

For instance, let’s look at the sequence generated by the recurrence relationship: 

𝑥𝑥0 = 1   and  𝑥𝑥1 = 2    and    𝑥𝑥𝑛𝑛+2 = |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1|   𝑛𝑛 ≥ 0 

We can write out the first four terms:  1,2,1,1.   

From this it is a little bit tempting to conclude that the sequence just repeats 1,2,1, 
1,2,1,1,2,1….   And it is also a little tempting to conclude that the sequence just goes 
on as 1,2,1,1,1,1,1,1 . But do we have enough information in the first four terms to 
justify either of our conclusions? The answer is, of course, “No”. The recurrence 
relationship we have looked at makes each term in the sequence [from 𝑥𝑥2 onwards] 
depend on the previous two terms, so we need to see repeat in two adjacent terms 
before we can start to understand what the sequence will do. 

 
32 We are occasionally loose with our terminology, but it is always very clear what we mean. For instance, we 
might talk about the first term in a series when we should talk about the first term in a sequence whose sum is 
the series etc.   
33 There is a whole list of integer sequences: https://oeis.org/ ; the sequence we have used is an 
example/modification of sequence number A110044 in the list. 
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If we write a few more terms, we can see what pattern emerges: 1,2,1,1,0,1,1,0,1,1…  

The message you need to take away from this brief example is that you must always 
make sure you have written out enough terms to justify your conclusions and the 
number of terms you need to write out to spot any patterns that might emerge is 
dictated by the structure of the recurrence relationship.  

As an aside, we could start to shape a TMUA/ESAT question from this sequence. We 
could ask you to find  ∑ 𝑥𝑥𝑛𝑛𝑛𝑛=100

𝑛𝑛=0   . Let’s look briefly at how we might go about this.   

When dealing with “sigma” notation there are a number of things you need to do: first 
pay attention to the limits – in this case we start at 𝑥𝑥0 and finish at 𝑥𝑥100  so there are 
101 terms in the sequence [careful as it is easy but wrong to assume there are 100 
terms34 !]. Second, it is generally a good idea to write out the first few terms from such 
a sum to help get a feel for what is being asked [this is actually a very good idea 
generally, especially when the sum is a more complicated expression. You can see 
those sorts of expressions frequently in STEP mathematics questions – for past 
papers: https://www.ocr.org.uk/students/step-mathematics/preparing-for-step/]. And 
third, because we will be working out the sum using the patterns we have noticed from 
the recurrence relationship, it is useful to think about what happens at the end of the 
sum [i.e.,𝑥𝑥98 , 𝑥𝑥99 , 𝑥𝑥100 ]: 

 

� 𝑥𝑥𝑛𝑛

𝑛𝑛=100

𝑛𝑛=0

= 1⏟
𝑥𝑥0

+ 2 + 1 + 1⏟
𝑥𝑥3

+ 0 + 1 + 1⏟
𝑥𝑥6

+ 0 + 1 … … . . + 1⏟
𝑥𝑥3𝑘𝑘

+ 0 + 1�������… . . … 1⏟
𝑥𝑥99

+ 0 

 

We have spotted that the sequence can be broken into blocks of 3 [and the first term 
in each block of 3  is  𝑥𝑥3𝑘𝑘 ] and the last two terms are the first two terms in the block of 
3.  We now have enough information to work out the sum fairly easily – and we leave 
that as “an exercise for the reader”.  

  

 
34 Explore the “fence post” issue in mathematics. We mention this again below.  
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MM2.2. 

Arithmetic series, including the formula for the sum of the first n natural numbers.  

 

In the TMUA/ESAT we expect you to know what an arithmetic series [and sequence] 
is and recognise one when it appears. We often refer to these as Arithmetic 
Progressions [APs] in the TMUA. You should also know and understand [i.e., be able 
to derive35] the standard formulae and terminology : 

first term = 𝑎𝑎   

common difference = 𝑑𝑑 

(nth term )  𝑢𝑢𝑛𝑛 = 𝑎𝑎 + (𝑛𝑛 − 1)𝑑𝑑  

(sum to n terms) Sn  =  𝑛𝑛
2

(2𝑎𝑎 + (𝑛𝑛 − 1)𝑑𝑑) =  𝑛𝑛
2

(𝑎𝑎 + 𝑎𝑎 + (𝑛𝑛 − 1)𝑑𝑑) =  𝑛𝑛
2

(𝑢𝑢1 + 𝑢𝑢𝑛𝑛) 

 

The last expression for the sum can be thought of as saying : 

𝑆𝑆𝑛𝑛 = 𝑛𝑛 × �𝑢𝑢1+𝑢𝑢𝑛𝑛
2

� =  𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟 𝑜𝑜𝑓𝑓 𝑡𝑡𝑛𝑛𝑟𝑟𝑚𝑚𝑡𝑡 × 𝑎𝑎𝑎𝑎𝑛𝑛𝑟𝑟𝑎𝑎𝑔𝑔𝑛𝑛 𝑎𝑎𝑎𝑎𝑣𝑣𝑢𝑢𝑛𝑛 𝑜𝑜𝑓𝑓 𝑡𝑡𝑛𝑛𝑟𝑟𝑚𝑚𝑡𝑡    

And finally, it is useful to note that   𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 = 𝑑𝑑   

 

We can create new arithmetic series by adding two [or more] series together: 

𝑆𝑆𝑛𝑛 = 𝑎𝑎 + (𝑎𝑎 + 𝑑𝑑) + (𝑎𝑎 + 2𝑑𝑑) + ⋯+ (𝑎𝑎 + (𝑛𝑛 − 1)𝑑𝑑) 

𝑇𝑇𝑛𝑛 = 𝐴𝐴 + (𝐴𝐴 + 𝐷𝐷) + (𝐴𝐴 + 2𝐷𝐷) + ⋯+ (𝐴𝐴 + (𝑛𝑛 − 1)𝐷𝐷) 

And then we see that the sum is 

𝑆𝑆𝑛𝑛 + 𝑇𝑇𝑛𝑛 = 𝑎𝑎 + 𝐴𝐴 + (𝑎𝑎 + 𝐴𝐴 + 𝑑𝑑 + 𝐷𝐷) + �𝑎𝑎 + 𝐴𝐴 + 2(𝑑𝑑 + 𝐷𝐷)� + ⋯+ (𝑎𝑎 + 𝐴𝐴 + (𝑛𝑛 − 1)(𝑑𝑑 + 𝐷𝐷))  

which is the sum of an arithmetic sequence with first term 𝑎𝑎 + 𝐴𝐴  and common 
difference 𝑑𝑑 + 𝐷𝐷.  

 

 
35 We will not test your ability to derive standard formulae in the TMUA/ESAT; but we would recommend, for 
your general mathematics education, that you know how to derive every formula in the TMUA/ESAT  
specification as the derivation will give you insights into the structure of the topic. And by “knowing how to 
derive” we don’t mean that you have just learnt the derivation, the important point is understanding it. These 
derivations can be found in many textbooks and on the internet too.  
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Exercise 

We could also look at any linear combination of two such sequences: 𝛼𝛼𝑢𝑢𝑛𝑛 + 𝛽𝛽𝑎𝑎𝑛𝑛  ; 
verify these are also arithmetic sequences. Does this work for linear sums of more 
than two sequences  [e.g.,  𝛼𝛼𝑢𝑢𝑛𝑛 + 𝛽𝛽𝑎𝑎𝑛𝑛 + 𝛾𝛾𝑤𝑤𝑛𝑛]?  

 

There are lots of questions on arithmetic sequences in the TMUA/ESAT past papers. 
We recommend you work through the past papers first [initially under timed conditions] 
and if you get stuck, study the detailed worked answers we have supplied for each 
TMUA/ESAT paper.  
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MM2.3.  
The sum of a finite geometric series. 
The sum to infinity of a convergent geometric series, including the use of |𝑟𝑟| < 1  
 

 

In the TMUA/ESAT we expect you to know what a geometric series [and sequence] is 
and recognise one when it appears. We often refer to these as Geometric 
Progressions [GPs] in the TMUA. You should also know and understand the standard 
formulae and terminology : 

first term = 𝑎𝑎  [sometimes this is written as 𝑎𝑎𝑟𝑟0  to fit in with the formula for  𝑢𝑢𝑛𝑛]   

common ratio = 𝑟𝑟 

(nth term )  𝑢𝑢𝑛𝑛 = 𝑎𝑎𝑟𝑟𝑛𝑛−1  

sum to n terms Sn  =  
𝑎𝑎(1 − 𝑟𝑟𝑛𝑛)

1 − 𝑟𝑟
 

  sum to infinity S∞ =  
𝑎𝑎

1 − 𝑟𝑟
           valid when |𝑟𝑟| < 1 

   

And you should be comfortable using Σ  notation and GPs: 

𝑆𝑆𝑛𝑛 =  �𝑎𝑎𝑟𝑟𝑘𝑘−1
𝑛𝑛

𝑘𝑘=1

=  �𝑎𝑎𝑟𝑟𝑘𝑘
𝑛𝑛−1

𝑘𝑘=0

 

Note how we have written the same expression in two different ways using the 
notation.36 

There are some additional useful formulae/techniques you should keep in mind: 

The ratio of adjacent terms is fixed :   𝑢𝑢𝑛𝑛+1
𝑢𝑢𝑛𝑛

= 𝑟𝑟      so      𝑢𝑢𝑛𝑛+1 
𝑢𝑢𝑛𝑛

=  𝑢𝑢𝑛𝑛
𝑢𝑢𝑛𝑛−1

   etc  

   

You can derive new progressions from a given GP : 

Given    𝑆𝑆𝑛𝑛 = 𝑎𝑎 + 𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟2 + 𝑎𝑎𝑟𝑟3 + 𝑎𝑎𝑟𝑟4 + 𝑎𝑎𝑟𝑟5 … … … .. 

 
36 Whilst it takes some time to get used to Σ notation, you should make some effort to be fluent using it as it 
will appear frequently during your higher studies and it will usually be assumed you are familiar with it and can 
manipulate it easily. You might eventually encounter expression with sums of sums ΣΣ and even sums of sums 
of sums ΣΣΣ etc., etc. 
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Then we can replace 𝑟𝑟 by −𝑟𝑟  to get  

𝑆𝑆𝑛𝑛(−𝑟𝑟) =  𝑎𝑎 − 𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟2 − 𝑎𝑎𝑟𝑟3 + 𝑎𝑎𝑟𝑟4 − 𝑎𝑎𝑟𝑟5 … … … .. 

and we note that 𝑆𝑆𝑛𝑛(−𝑟𝑟)  is also a GP with first term 𝑎𝑎 and common ratio −𝑟𝑟  and 

𝑆𝑆∞ =  
𝑎𝑎

1 + 𝑟𝑟 
 

 

Using this, we can also create other GPs: 

Consider this progression: 

1
2

 �𝑆𝑆𝑛𝑛 + 𝑆𝑆𝑛𝑛(−𝑟𝑟)� =   𝑎𝑎 + 𝑎𝑎𝑟𝑟2 + 𝑎𝑎𝑟𝑟4 + 𝑎𝑎𝑟𝑟6 … … … 

 Which is  a GP with 𝑢𝑢1 = 𝑎𝑎   and a common ratio of 𝑟𝑟2.  What is its sum to infinity ?  

 

You can also explore 1
2

 �𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑛𝑛(−𝑟𝑟)� 

 

And we can generate new GPs by raising each term in  𝑆𝑆𝑛𝑛 to a power Here are some 
examples: 

 

Example 1 

Square every term : 

 

𝑆𝑆𝑛𝑛(𝑡𝑡𝑞𝑞𝑢𝑢𝑎𝑎𝑟𝑟𝑛𝑛𝑑𝑑) = 𝑎𝑎2 + 𝑎𝑎2𝑟𝑟2 + 𝑎𝑎2𝑟𝑟4 + 𝑎𝑎2𝑟𝑟6 + ⋯… …. 

 

So 𝑆𝑆𝑛𝑛(𝑡𝑡𝑞𝑞𝑢𝑢𝑎𝑎𝑟𝑟𝑛𝑛𝑑𝑑) is a GP with 𝑢𝑢1 = 𝑎𝑎2 and a common ratio of 𝑟𝑟2.  

What is 𝑆𝑆∞ (𝑡𝑡𝑞𝑞𝑢𝑢𝑎𝑎𝑟𝑟𝑛𝑛𝑑𝑑)? 
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Example 2 

Raise every term to power of 𝑘𝑘  [we will assume 𝑘𝑘 is  a positive integer]  

𝑆𝑆𝑛𝑛(𝑝𝑝𝑜𝑜𝑤𝑤𝑛𝑛𝑟𝑟 𝑖𝑖𝑡𝑡 𝑘𝑘) =  𝑎𝑎𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑟𝑟𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑟𝑟2𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑟𝑟3𝑘𝑘 + ⋯… … 

Verify that 𝑆𝑆𝑛𝑛(𝑝𝑝𝑜𝑜𝑤𝑤𝑛𝑛𝑟𝑟 𝑖𝑖𝑡𝑡 𝑘𝑘)  is also a GP. What can you say about 𝑆𝑆∞(𝑝𝑝𝑜𝑜𝑤𝑤𝑛𝑛𝑟𝑟 𝑖𝑖𝑡𝑡 𝑘𝑘)  when 
|𝑟𝑟| < 1  ?   What happens if 𝑘𝑘 is any positive number ?  And what about if 𝑘𝑘 < 0 and 
0 < 𝑟𝑟 < 1 ? 

 

  

We can also look at sum of part of a GP : 

Given 𝑆𝑆𝑘𝑘 = 𝑎𝑎 + 𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟2 + 𝑎𝑎𝑟𝑟3 + 𝑎𝑎𝑟𝑟4 + ⋯+ 𝑎𝑎𝑟𝑟𝑘𝑘−1  find an expression for 𝑎𝑎𝑟𝑟𝑚𝑚 +
𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛  [where we assume 𝑛𝑛 > 𝑚𝑚] 

When exploring these sorts of expression, you have to be very careful with the ends 
of the sequence as it can be easy to write the wrong thing when simplifying. For 
instance , it is tempting to write this expression as 𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑚𝑚  but that would be wrong 
[why ? ]. And also, for instance, we might ask how many terms are there in the sum 
𝑎𝑎𝑟𝑟𝑚𝑚 + 𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛 ?  Is it 𝑛𝑛 −𝑚𝑚 terms37 ?  

There are lots of ways of tackling this sum and how you approach it might depend on 
how the problem you are dealing with is set up: 

 

Method 1 

Treat is as the difference of two sums: 

𝑎𝑎𝑟𝑟𝑚𝑚 + 𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑆𝑆𝑛𝑛+1 − 𝑆𝑆𝑚𝑚 

Note the 𝑛𝑛 + 1 in 𝑆𝑆𝑛𝑛+1   

 

Method 2  

Factorise out 𝑟𝑟𝑚𝑚  and treat what is in the bracket as a simple GP with 𝑢𝑢1 = 𝑎𝑎 and 
common ratio 𝑟𝑟  and number of terms 𝑛𝑛 −𝑚𝑚 + 1  

 
37 NO!  it is 𝑛𝑛 −𝑚𝑚 + 1 terms. Can you see why ? This is an example of the fence post error – it is very easy to 
make this error, so explore what it is and think about how you would avoid making it when answering 
questions  [I still use counting on my fingers sometimes to be sure I am getting things correct if I fear I might 
make a fence-post error.]  
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𝑎𝑎𝑟𝑟𝑚𝑚 + 𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑟𝑟𝑚𝑚(𝑎𝑎 + 𝑎𝑎𝑟𝑟 + ⋯+ 𝑎𝑎𝑟𝑟𝑛𝑛−𝑚𝑚)  

Or even better, factorise out 𝑎𝑎𝑟𝑟𝑚𝑚   : 

𝑎𝑎𝑟𝑟𝑚𝑚 + 𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑎𝑎𝑟𝑟𝑚𝑚(1 + 𝑟𝑟 + ⋯+ 𝑟𝑟𝑛𝑛−𝑚𝑚)  

Method 3 

Treat it as a new GP with first term 𝑎𝑎𝑟𝑟𝑚𝑚  and common ratio 𝑟𝑟  and number of terms 
𝑛𝑛 −𝑚𝑚 + 1 

𝑎𝑎𝑟𝑟𝑚𝑚 + 𝑎𝑎𝑟𝑟𝑚𝑚+1 + ⋯  + 𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑎𝑎𝑟𝑟𝑚𝑚 + (𝑎𝑎𝑟𝑟𝑚𝑚)𝑟𝑟 + (𝑎𝑎𝑟𝑟𝑚𝑚)𝑟𝑟2 +  … + (𝑎𝑎𝑟𝑟𝑚𝑚)𝑟𝑟𝑛𝑛−𝑚𝑚  

 

Exercise  

for each of the above methods, work out the sum and verify all three methods give you 
the same answer. This is more an exercise in being careful than anything else – you 
should not skip this exercise thinking you can do it easily ! 

 

 

There are lots of questions on geometric sequences in the TMUA/ESAT past papers. 
We recommend you work through the past papers first [initially under timed conditions] 
and if you get stuck, study the detailed worked answers we have supplied for each 
TMUA/ESAT paper.  
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MM2.4.  
 
Binomial expansion of  (1 + 𝑥𝑥)𝑛𝑛  for positive integer n, and for expressions of the 
form �𝑎𝑎 + 𝑓𝑓(𝑥𝑥)�𝑛𝑛  for positive integer n and simple 𝑓𝑓(𝑥𝑥). 
 
The notations 𝑛𝑛! and �𝑛𝑛𝑎𝑎� . 
 
 
 
The binomial theorem is quite rich mathematically and there are lots of different ways 
we can approach it. For examinations, the best way is usually just to know the formulae 
and their quirks; but we do not recommend that you ever learn your mathematics in a 
way that sidesteps understanding. Here we will start by telling you what you need to 
know about the binomial expansion for the TMUA/ESAT and give you a few tips; then 
we will look in more detail at how the binomial expansion works. 
 
What we expect you to know: in simple terms, we expect you to be able to do two 
things: one, calculate values of �𝑛𝑛𝑎𝑎�; and two, work out any term in expressions such 
as (1 + 𝑥𝑥)𝑛𝑛 and, more generally, in expressions of the from �𝑎𝑎 + 𝑓𝑓(𝑥𝑥)�𝑛𝑛.    
 
For instance, we might ask you to find the constant term in the expansion of 
 

�
1
𝑥𝑥2

− 3𝑥𝑥3�
10

 
 
All we have really done here so far is reiterate what the specification says. But let’s 
look at what this entails in a little more detail: 
 
For simple cases such as the expansion of (1 + 𝑥𝑥)𝑛𝑛 for smallish 𝑛𝑛, you will probably 
have learnt how to use Pascal’s triangle. You might even have used Pascal’s triangle 
when tackling slightly more complicated expressions such as � 1

𝑥𝑥2
− 3𝑥𝑥3�

10
. This 

approach will always work, but sometimes can be very slow and time consuming; for 
instance, what if you were asked for the first five terms [in increasing powers of 𝑥𝑥] of 
the expansion of (2 + 3𝑥𝑥)17 ?  In that case, finding the 17th row in Pascals triangle and 
writing out the correct expression will take some time. Is there a quicker and slicker 
method? Yes! : using the Binomial expansion directly.  Using the Binomial expansion 
is easier than it looks once you understand the patterns in the expansion. 
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Let’s start by writing out the Binomial expansion in full and then take it to pieces so we 
can see how easy it is to use:38 
 

(𝑎𝑎 + 𝑓𝑓(𝑥𝑥))𝑛𝑛 = ��
𝑛𝑛
𝑘𝑘
� 𝑎𝑎𝑘𝑘[𝑓𝑓(𝑥𝑥)]𝑛𝑛−𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 

 

Whilst this looks a little daunting to start with, it is actually very easy to use once you 
know the patterns you need to think about. Let’s work a couple of examples to see 
how we can use this in practice to find any term in any expansion quickly and 
effortlessly: 

Example 1 

Find the term with 𝑥𝑥7 in the expansion (3 + 2𝑥𝑥)8 

We build the answer in stages so you can see how the  binomial expansion works in 
practice: 

First as we need 𝑥𝑥7 we know we must be looking for the term that has (2𝑥𝑥)7 in it so 
we write that down: 

(2𝑥𝑥)7 

Note that both the 2 and the 𝑥𝑥 are raised to the power of 7. That is important.39  

Then we need to work out what power of 3 goes with (2𝑥𝑥)7 and we use the fact that 
the sum of the powers of the individual terms always add to the overall power which 
is 8 here.  So, we must have 31 together with (2𝑥𝑥)7 because 1 + 7 = 8. So, we write 

31(2𝑥𝑥)7 

And finally, we need to work out  what �𝑛𝑛𝑎𝑎� applies to this. That is easy to do. The 𝑛𝑛 
value is always the power of the bracket so here 𝑛𝑛 = 8, and the 𝑟𝑟 can be either the 
power of the 3, which is 1, or the power of the (2𝑥𝑥) which is 7. That might seem odd 
that we can use either �81� or �87�  but it is ok as both have the same value [think, for 
the moment, of the symmetry of Pascal’s triangle40]. So, we can write the answer as  

 

 

38 Or we could write this as:  (𝑎𝑎 + 𝑓𝑓(𝑥𝑥))𝑛𝑛 = � �𝑛𝑛𝑘𝑘�𝑎𝑎
𝑛𝑛−𝑘𝑘[𝑓𝑓(𝑥𝑥)]𝑘𝑘

𝑛𝑛

𝑘𝑘=0
 ; check you understand why both 

forms give the same result. 
39 A common error is to write 2𝑥𝑥7 without the bracket and so forget that the 2 must also be raised to the 
power of 7.  
40 Or you can prove it using the definition of �𝑛𝑛𝑎𝑎�. Try to prove  �𝑛𝑛𝑎𝑎� =  � 𝑛𝑛

𝑛𝑛−𝑎𝑎�  
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                                             �81� 31(2𝑥𝑥)7  or   �87� 31(2𝑥𝑥)7    

 

You can then work out the numerical value of the coefficient easily. 

     

 

So, in summary, the patterns you need to recall are  

1. The powers of the terms always add to the power that the bracket is raised to. 
2. The number 𝑛𝑛 in the top of the �𝑛𝑛𝑎𝑎� is the power that the bracket is raised to. 
3. The 𝑟𝑟 value in �𝑛𝑛𝑎𝑎� can be either of the powers appearing in the expression. 

Let’s look at a second  example that illustrates a mistake that students often make 
when dealing with the Binomial expansion [and you, of course, will not make this 
mistake!]: 

Example 2  

Find the coefficient of 𝑥𝑥5 in (2 − 3𝑥𝑥)7 

Following our rules above it is very tempting [but wrong!] to write the answer as  
�75�223𝑥𝑥5 

This is wrong for two reasons – one serious and one less serious. The less serious 
reason is that this is not a coefficient as it still has 𝑥𝑥5 in it, but that is a forgivable error. 
The major issue is the way we have written the power-of-5 bit in the expression. What 
we should have realised is that we need to look at −3𝑥𝑥  all raised to the power of 5: 
that is, both the minus sign and the 3 need to be raised to the power of 5 as well.  So, 
the correct expression [that will give us our coefficient] is �75�22(−3𝑥𝑥)5.  We will leave 
you to work out the answer from there. 
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How the binomial expansion works. 

This section is not something we expect you to know for the TMUA/ESAT so you can 
skip it if you want. We are going to set out a brief explanation of how the binomial 
theorem works.  

We start by looking at what �𝑛𝑛𝑎𝑎� means and we shall do this using a simple example: 

Example 

Imagine you have five letters A B C D E. From these five letters you want to find how 
many different collections of 3 letters you can get but you don’t want the order of the 
letters to be important. So, for instance, ABC is a collection and so is ACB and they 
count as the SAME collection as they contain the same three letters [think of a 
collection here as  bag of three letters all jumbled rather than the three letters neatly 
laid one after the other on a table ]. 

How can we work out how many different collections of 3 letters we can get from the 
5 letters A B C D E ? [that is how many ways we can chose 3 things from 5 things]. 
Let’s work out how we might go about it. We could start with three boxes and see how 
many ways we can fill them with three different letters from A B C D E: 

      | Box 1 |  Box 2  |  Box 3  | 

We have 5 choices of letter for box 1; and then once we have chosen box 1, we have 
4 letters left for box 2; and once we have chosen box 2’s letter, we have 3 choices left 
for box 3. So it appears that we have 5 × 4 × 3 choices overall for filling the three 
boxes. Does that mean we can get 5 × 4 × 3 = 60 different collections of 3 letters 
chosen from A B C D E?  The answer is no, as we will have chosen the same three 
letters a number of times: for instance, one of choices must be A B C  but another 
choice will be A C B and another choice will be B A C and so on. In other words, we 
will have multiple copies of each collection of letters amongst our 60 different choices 
we made. How do we deal with this ?  

Let’s work out how many times we must have picked out a collection of three letters. 
We will work this out for the collection A B C.  How many ways can we choose the 
letters A B C in order?  In other words, how many ways can we order the letters A B 
C?  We can think of this in a similar way to above:  we have 3 choices of the first letter 
we choose [ A or B or C ] and then we have 2 choices for the second letter we choose, 
and 1 choice for the final letter. So, we have 3 × 2 × 1 ways of choosing the letters A 
B C is 3 × 2 × 1 = 6.  We can list these : 

ABC   ACB  BAC  BCA  CAB  CBA 

So, let’s stop and take a look at what we have worked out. We wanted to see how 
many ways we can select 3 letters from 5 letters without worrying about the order. We 
discovered we could select 3 letters in 60 different ways, but we also noticed that the 
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same 3 letters could be chosen 6 different ways as we chose them in order.  So, every 
6 of the 60 we chose will be the same collection, so we only really have 60 divided by 
6 [that is, 10] different collections of 3 letters we can choose [can you list them?] 

Let’s write the whole calculation out in one go:  5×4×3
3×2×1

= 10 

We notice that the top is almost 5!  And the bottom is 3!  We can use this to write the 
expression another way as 5×4×3×(2×1) 

(3×2×1)×(2×1)
=  5!

3!2!
  and this is just �53� 

Often �53�  is spoken as “5 choose 3” for obvious reasons – and sometimes it is written 
at 5C3 which can also be read as “5 choose 3” even though the C actually stands for 
“combination”. 

We can now look at the general case and work out how many ways we can choose a 
collection of 𝑟𝑟 things from a collection of 𝑛𝑛 different things.  This takes a little time to 
grasp but the effort is worth it. If you don’t like the brief explanation we have given 
here, you can look elsewhere at the topic of “permutations and combinations” to find 
an explanation that suits you.41  

We do exactly the same as above in stages. First, we note that if we have 𝑟𝑟 boxes 
than we have 𝑛𝑛 choices for the first box, 𝑛𝑛 − 1 choices for the second box and 𝑛𝑛 − 2 
choices for the third box and so on. If we draw out 𝑛𝑛 boxes, we need to fill the first 𝑟𝑟 
of them and leave the remaining boxes empty. There will be 𝑛𝑛 − 𝑟𝑟 empty boxes and 
𝑟𝑟 filled boxes.  

 

∎∎…∎∎�������
𝑎𝑎 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎

| ∎∎…∎�����
𝑛𝑛−𝑎𝑎 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎

 

 

How many choices does this give us in this case: the answer must be  

𝑛𝑛 ×  𝑛𝑛 − 1 ×  𝑛𝑛 − 2 × … ×  𝑛𝑛 − 𝑟𝑟 + 1 

 This is like the 5 × 4 × 3 above. 

And we can write this as follows: 

 
41 The topic of “perms and coms” is often quite tricky to grasp when first met - and different people respond in 
different ways to different explanations. You might find that you just don’t grasp the way we have explained 
things here, and if that is the case then you will need to search around for other ways of unpacking the ideas.  
It is worth spending some time thinking it through as it is a very useful topic and one that is worth 
understanding deeply. Spend time thinking about the concepts and also practise lots of questions until you get 
the hang of how the ideas work in real examples.  
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∎∎…∎∎�������
𝑎𝑎 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎

�������
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

| ∎∎…∎�����
𝑛𝑛−𝑎𝑎 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎
�����
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

    =   
∎∎. . .∎∎|∎∎. . .∎�������������

𝑛𝑛 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎

∎∎…∎�����
𝑛𝑛−𝑎𝑎 𝑏𝑏𝑏𝑏𝑥𝑥𝑎𝑎𝑎𝑎

=  
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
 

And this is just like above where we used  

5 × 4 × 3 =  
5 × 4 × 3 × 2 × 1

2 × 1
=

5!
(5 − 3)!

 

But we recall that each of these choices contains repeats. We have 𝑟𝑟 objects chosen 
lots of times but each in a different order – just like above where we had ABC and ACB 
etc. How many ways have we chosen the same 𝑟𝑟 objects ? The answer is just as 
above - it must be 𝑟𝑟! different ways. So, in the choices 𝑛𝑛!

(𝑛𝑛−𝑎𝑎)!
  we have counted each 

set of 𝑟𝑟 objects 𝑟𝑟! times so to work out how many different collections we have, we 
need to divide by 𝑟𝑟!  [just like we had 60  divided by 6 above] 

 

This gives us the number of ways of choosing r objects from n objects : 

 

�
𝑛𝑛
𝑟𝑟
� =  

𝑛𝑛!
(𝑛𝑛 − 𝑟𝑟)!

÷ 𝑟𝑟! =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)! 𝑟𝑟!
  

 

We can see how each bit of the equation works. The 𝑛𝑛! divided by (𝑛𝑛 − 𝑟𝑟)! is the 
number of ways we can fill the first 𝑟𝑟 boxes out of a set of 𝑛𝑛 boxes;  and the 𝑟𝑟! is the 
number of ways we can pick the same collection of 𝑟𝑟 objects in order in those first 𝑟𝑟 
boxes. 

 

At this stage it is useful to revisit something we mentioned in an example above. We 
mentioned that the symbol �𝑛𝑛𝑎𝑎� has some symmetry – so for instance �72� is the same 
as �75�.  We can now explore why this is the case using the ideas we have set out here. 
If you are asked how many ways you can choose 2 objects from 7 objects you have 
two ways you can work out the answer. You can choose all the different sets of two 
objects you can find and count them [that will give you �72�]; or you can think about how 
many ways you can choose 5 objects and throw them away to leave two objects 
behind [that is �75� ]. A little thought shows you these must be the same. Count how 
many ways you can choose 𝑟𝑟 objects from 𝑛𝑛 objects and keep them, or how many 
ways you can choose 𝑛𝑛 − 𝑟𝑟 objects from 𝑛𝑛 object and throw them away. In both cases 
you are left with all different collections of 𝑟𝑟 objects chosen from 𝑛𝑛 objects . 
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Now how does this lengthy digression about choosing 3 objects from 9 objects or 2 
objects from 7 objects etc. help us understand how the binomial expansion works ?  
Let’s look at an example to understand how they are related.  

Consider (2 + 3𝑥𝑥)5. We will write this out in full as 

(2 + 3𝑥𝑥)(2 + 3𝑥𝑥)(2 + 3𝑥𝑥)(2 + 3𝑥𝑥)(2 + 3𝑥𝑥) 

Let’s work out roughly how we might go about multiplying out these brackets:  

If we multiply out term by term, we need to choose either 2 or 3𝑥𝑥 from each bracket 
and make sure we have got all the different combination [doing this long-hand will take 
ages – you can try if you want]  

When we multiply out term by term, we will have things like: 

(2 from 1st bracket) x (2 from 2nd )  x (2 from 3rd ) x (3𝑥𝑥 from 4th ) x (3𝑥𝑥 from 5th bracket)  
= 23(3𝑥𝑥)2 

and we can also have  

 (2 from 1st bracket) x (3𝑥𝑥 from 2nd ) x (2 from 3rd ) x (3𝑥𝑥 from 4th ) x (2 from 5th bracket) 
= 23(3𝑥𝑥)2 

and also  

(3𝑥𝑥 from 1st bracket) x (2 from 2nd ) x (2 from 3rd) x (3𝑥𝑥 from 4th) x (2 from 5th bracket)  
= 23(3𝑥𝑥)2 

and so on…. 

In other words, the term  23(3𝑥𝑥)2 comes from all sorts of different combinations – we 
need to pick three brackets to give us the 2’s or two brackets to give us the  3𝑥𝑥’s.   

 

How many different ways can we pick three 2’s from 5 brackets ?  We know the answer 
from above – it is how many ways can we choose 3 from 5 and that is �53 �  [or we could 
look at the number of ways of choosing two lots of 3𝑥𝑥 from five brackets and use �52 �]  

So, the 𝑥𝑥2 term in the expansion of (2 + 3𝑥𝑥)5 must be �53 �23(3𝑥𝑥)2 

Now we can see how the general term works in the binomial expansion: 

 

(𝑓𝑓(𝑥𝑥) + 𝑎𝑎)(𝑓𝑓(𝑥𝑥) + 𝑎𝑎)(𝑓𝑓(𝑥𝑥) + 𝑎𝑎) … (𝑓𝑓(𝑥𝑥) + 𝑎𝑎)�������������������������������
𝑛𝑛 𝑏𝑏𝑎𝑎𝑎𝑎𝑐𝑐𝑘𝑘𝑎𝑎𝑡𝑡𝑎𝑎 

= ��
𝑛𝑛
𝑘𝑘
� [𝑓𝑓(𝑥𝑥)]𝑘𝑘𝑎𝑎𝑛𝑛−𝑘𝑘

𝑛𝑛

𝑘𝑘=0
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Let’s look at one term on the right hand side �𝑛𝑛𝑘𝑘�[𝑓𝑓(𝑥𝑥)]𝑘𝑘𝑎𝑎𝑛𝑛−𝑘𝑘  This term is, in essence, 
made up from choosing 𝑓𝑓(𝑥𝑥) from 𝑘𝑘 of the brackets and then using the 𝑎𝑎 from the 
remaining 𝑛𝑛 − 𝑘𝑘 brackets [hence the powers must sum to 𝑛𝑛] and then seeing that we 
get  𝑘𝑘 lots of 𝑓𝑓(𝑥𝑥) from 𝑛𝑛 brackets in exactly �𝑛𝑛𝑘𝑘� different ways so there must be �𝑛𝑛𝑘𝑘� 
lots of the term [𝑓𝑓(𝑥𝑥)]𝑘𝑘𝑎𝑎𝑛𝑛−𝑘𝑘 in the expansion. 
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Coordinate geometry in the (𝒙𝒙,𝒚𝒚) plane.  
MM3.1.  
Equation of a straight line, including 
                                             𝑦𝑦 − 𝑦𝑦1 = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥1) 
                                            𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0  
Conditions for two straight lines to be parallel or perpendicular to each other. 
Finding equations of straight lines given information in various forms.  
 

 

The specification here is self-explanatory as to what you need to know about straight 
lines. You should be comfortable dealing both algebraically and geometrically [i.e., 
graphically] with straight lines. In this section we will briefly explore most of the main 
ideas we expect you to know and add a few things to think about.  

Let’s start with the classic 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐  and remind ourselves of what the 𝑚𝑚 and the 𝑐𝑐 
represent for a diagram of a line whilst we explore things in a little more detail. 

The 𝑚𝑚 in 𝑚𝑚𝑥𝑥 + 𝑐𝑐 represents the gradient of the straight line. [You should be able to 
calculate the gradient of a straight line if you are given two points that it passes 
through.] But what does the gradient tell us about the line? The usual way of thinking 
about the 𝑚𝑚 is as a measure of “steepness”: the greater the value of 𝑚𝑚 then the 
steeper the line; and if 𝑚𝑚 is positive the line slopes from bottom left to top right, and if 
the 𝑚𝑚 is negative is slopes from top left to bottom right.  

But what do we really mean by steepness? We can think of steepness in a couple of 
interrelated ways: we can think of the gradient as telling us how much we have to go 
vertically to get back on the line for every 1 unit we move horizontally from a point on 
the line. So, if the gradient is 2 then we need to move vertically up by 2 for every 1 unit 
we move horizontally from the line; and if the gradient is minus 3 then we need to 
move down by 3 for every 1 unit we move horizontally from the line [see diagrams 
below].   

Another way of thinking about this [which is more useful when we encounter straight 
lines as tangents to curves] is that, for instance, a gradient of 2 tells us that the 𝑦𝑦 
values are changing twice as fast as the 𝑥𝑥 values – so as 𝑥𝑥 increases by 1 the 𝑦𝑦 values 
must increase by 2, and if 𝑥𝑥 increase by 5 then 𝑦𝑦 must increase by 10 and so on. 
Negative gradients, for instance −3,  just tell us that as 𝑥𝑥 increases by 1 then the 
𝑦𝑦 values decrease [the minus sign signals the decrease] by 3. So gradient is  a “rate 
of change” telling us the rate at which 𝑦𝑦 changes relative to 𝑥𝑥.  
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There is yet another way to think about the gradient which can be useful, that is to 
consider the gradient as the tan [that is the trigonometric tan] of the angle that the line 
makes with the positive 𝑥𝑥 axis [see diagrams] and of this we assume the scales on the 
𝑥𝑥-axis and the 𝑦𝑦-axis are the same. You should be able to see why this is the case if 
you consider how the gradient is calculated. So, the gradient of a line at 45 degrees 
should be tan 45  = 1 and that is exactly what we expect with a line such as 𝑦𝑦 = 𝑥𝑥.   If 
the angle is 135 then we would expect the gradient to be tan135 = −1 and that is 
exactly what we expect with a line such as 𝑦𝑦 = −𝑥𝑥 

 

   

 

There are a couple of special cases for gradients: horizontal lines [which have a 
gradient of zero] and vertical lines which don’t strictly have a gradient but often it is 
said they have an infinite gradient or negative infinite gradient  [this is all a bit of a 
fudge]. It is best to think of vertical lines [and perhaps horizontal lines] as special cases 
- vertical lines always have the equation 𝑥𝑥 =  𝑡𝑡𝑜𝑜𝑚𝑚𝑛𝑛 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟  and horizontal lines 
always have the equation 𝑦𝑦 =  𝑡𝑡𝑜𝑜𝑚𝑚𝑛𝑛 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟 . You should also be aware that the 𝑥𝑥-
axis has equation 𝑦𝑦 = 0 and the y-axis has equation 𝑥𝑥 = 0.  
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What can you say about the gradients of two parallel lines [we exclude horizontal and 
vertical lines for this discussion, but you should be able to spot when they come up as 
special cases]? They have the same steepness so they must have the same gradients.  
So we can say that lines 𝑦𝑦 = 𝑚𝑚1𝑥𝑥 + 𝑐𝑐1   and 𝑦𝑦 =  𝑚𝑚2𝑥𝑥 + 𝑐𝑐2 are parallel if and only if 
𝑚𝑚1 = 𝑚𝑚2 [check you know why we write “if and only if”  you might need to look at our 
Notes on Logic and Proof for TMUA paper 2] 

What about lines that are perpendicular to each other ?  Here you need to know [and 
understand] that the lines 𝑦𝑦 = 𝑚𝑚1𝑥𝑥 + 𝑐𝑐1   and 𝑦𝑦 =  𝑚𝑚2𝑥𝑥 + 𝑐𝑐2 are perpendicular if and 
only if 𝑚𝑚1𝑚𝑚2 = −1 .  You should be able to see this easily by looking at the two similar 
triangles in the diagram below – convince yourself why 𝑚𝑚1𝑚𝑚2 = −1 using this diagram 

 

                       

 

Exercise 

[This exercise is a little outside of the TMUA/ESAT specification.] Use the idea that the 
gradient of a straight line is equal to the tangent of the angle it makes with the 
horizontal 𝑥𝑥-axis to explain why  𝑚𝑚1𝑚𝑚2 = −1 if and only if the lines are perpendicular 
[exclude cases that involve vertical lines]. You can then ask yourself a general 
question – is there a condition on 𝑚𝑚1 and 𝑚𝑚2  when the lines meet at some other 
angles [60 or 45 degrees, for instance] and can you justify your answer? 
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We have spent some time discussing the gradient of a straight line so now we can turn 
to ask what the 𝑐𝑐 represents in the 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐. The answer is simple, and you should 
know it: the 𝑐𝑐 is the value of 𝑦𝑦 where the graph crosses the 𝑦𝑦-axis; this is often called 
“the 𝑦𝑦-intercept”. 

It is also useful to think about straight line graphs using graph-transformations [see 
later in these notes]: 

 

Exercise  

As an exercise, think about what each of the following transformations does to the 
graph of 𝑦𝑦 = 𝑥𝑥 [𝑦𝑦1 and 𝑥𝑥1 are constants; we could have called them something like 𝑝𝑝 
and 𝑞𝑞 but we chose to vary the notation a little as you will need to get used to all sorts 
of notation as you learn more mathematics – text books and teachers are not always 
consistent in how they use notation. If you introduce notation into your maths that isn’t 
given in a problem, make sure you make it VERY clear what your notation represents!] 

 

𝑦𝑦 = 𝑥𝑥   𝑡𝑡𝑜𝑜   𝑦𝑦 = 𝑚𝑚𝑥𝑥 

𝑦𝑦 = 𝑥𝑥    𝑡𝑡𝑜𝑜   𝑦𝑦 − 𝑦𝑦1 = 𝑥𝑥 

𝑦𝑦 = 𝑥𝑥    𝑡𝑡𝑜𝑜   𝑦𝑦 = 𝑥𝑥 − 𝑥𝑥1 

 

Then combinations of these: 

 

𝑦𝑦 = 𝑥𝑥    𝑡𝑡𝑜𝑜   𝑦𝑦 − 𝑦𝑦1 = 𝑚𝑚𝑥𝑥 

𝑦𝑦 = 𝑥𝑥    𝑡𝑡𝑜𝑜   𝑦𝑦 = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥1) 

𝑦𝑦 = 𝑥𝑥    𝑡𝑡𝑜𝑜    𝑦𝑦 − 𝑦𝑦1 = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥1) 
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Finally, you should be able to work out the equation of a line given two bits of 
information. What two bits of information do you think you will need to uniquely specify 
the equation of a line ?  The answer is you will need:42 

Case 1 

The coordinate of one point on the line and the gradient of the line – i.e., point (𝑥𝑥1, 𝑦𝑦1) 
lies on the line with gradient 𝑚𝑚.   

To work out the equation you need to notice that the gradient of the line joining any 
point (𝑥𝑥,𝑦𝑦) on the line with (𝑥𝑥1,𝑦𝑦1) must be constant: 

 

𝑦𝑦 − 𝑦𝑦1
𝑥𝑥 − 𝑥𝑥1

= 𝑚𝑚 

And then rearranging. 

Or you can use 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 and substitute the point (𝑥𝑥1,𝑦𝑦1) into the equation to find 𝑐𝑐  

Exercise 

Use both the above approaches to find the equation of the line with the following 
gradients and points: 

𝑚𝑚 = 4  point =  (3, 2) 

𝑚𝑚 =  −5  point =  (5, 3) 

𝑚𝑚 = −2 point =  (−2,−4) 

 

Case 2 

The coordinates of two distinct points that sit on the line (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2) .  

To work out the equation of the line, take a general point (𝑥𝑥, 𝑦𝑦) on the line and calculate 
the gradient of the line [which is fixed no matter what] in two different ways: 

𝑦𝑦 − 𝑦𝑦1
𝑥𝑥 − 𝑥𝑥1

=
𝑦𝑦1 − 𝑦𝑦2
𝑥𝑥1 − 𝑥𝑥2

 

and then rearrange this equation.   

 
42 With line questions it is very easy to make sign errors when putting coordinates into equations. Make sure 
you are careful ! 
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Or you can work out the gradient first using  𝑦𝑦1−𝑦𝑦2
𝑥𝑥1−𝑥𝑥2

  [make sure you get the order of the 

𝑥𝑥 and the 𝑦𝑦 on the top and the bottom the same way around – otherwise you will get 
the wrong sign for your gradient; and also make sure to put 𝑦𝑦 on the top and 𝑥𝑥 on the 
bottom ] and then using 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 and finding 𝑐𝑐 by substituting in one of the points 
(𝑥𝑥1, 𝑦𝑦1) or (𝑥𝑥2,𝑦𝑦2) into the equation.  

Exercise 

Use both the above approaches to find the equation of the line with the following 
gradients and points: 

(0, 0)  and (2, 3)  [is there a shortcut here?]  

(−2, 5)  and (−4, −7) 

(3, −7)  and (8, −7)  

 

Final thoughts 

In this section we have used the equation of a line in the from 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐. however, it 
is also common to see the equation of a line written in the form 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0 [It is 
unfortunate that 𝑐𝑐 appears in both as its role is different in each equation – do not 
assume that the 𝑐𝑐 in 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0 is the 𝑦𝑦-intercept!]. You should be able to move 
from one form to the other easily using algebra. Both forms are useful in different 
contexts and different education systems might put more emphasis on one form rather 
than the other.  
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MM3.2 
 
Coordinate geometry of the circle: using the equation of a circle in the forms   
 

(𝑥𝑥 − 𝑎𝑎)2 + (𝑦𝑦 − 𝑏𝑏)2 = 𝑟𝑟2 
 
                                                𝑥𝑥2 + 𝑦𝑦2 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑦𝑦 + 𝑛𝑛 = 0 
 
 
 

Imagine drawing a circle of radius 1 on the 𝑥𝑥𝑦𝑦-plane with its centre at the origin and a 
radius of 1. What can we say about all the points that sit on this circle? They must all 
be a distance of 1 from the origin. We can use Pythagoras’ theorem to express this 
idea in algebra [see the diagram] and when we do so we get the equation of  a basic 
circle:  𝑥𝑥2 + 𝑦𝑦2 = 12.  Any (𝑥𝑥, 𝑦𝑦) satisfying this equation is on the circle and any (𝑥𝑥, 𝑦𝑦) 
not satisfying this equation is not on the circle.43 

 

                        

 

 

 
43 As an aside, we can say all points inside the circle satisfy 𝑥𝑥2 + 𝑦𝑦2 < 12,  and all points outside the 
circle satisfy 𝑥𝑥2 + 𝑦𝑦2 > 12    
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What about taking the same circle and making the radius bigger? If the radius is 𝑟𝑟 then 
we see from Pythagoras’ Theorem [and the diagram below] that the equation of this 
circle must be 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2 

                                

What if we want the centre of the circle to be somewhere else on the 𝑥𝑥𝑦𝑦-plane?  We 
will find the equation of the circle in that case in one of two ways: we either using 
Pythagoras’ or using graph shifting: 

Let’s find the general equation of a circle of radius with its 𝑟𝑟 centre at the point (𝑎𝑎, 𝑏𝑏): 

Pythagoras’ tells us that all the (𝑥𝑥,𝑦𝑦) values that are a distance 𝑟𝑟 from (𝑎𝑎, 𝑏𝑏) will sit on 
the circle. So, we can use some geometry to work out the equation of the circle [see 
the diagram too] and we get  

(𝑥𝑥 − 𝑎𝑎)2 + (𝑦𝑦 − 𝑏𝑏)2 = 𝑟𝑟2 
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Or we can start with the circle of radius 𝑟𝑟 centred at the origin which has equation 𝑥𝑥2 +
𝑦𝑦2 = 𝑟𝑟2 and shift it horizontally by 𝑎𝑎 and vertically by 𝑏𝑏 [so it moves to have a centre 
at the point (𝑎𝑎, 𝑏𝑏) and using standard graph shifting. Doing this, we get the equation : 

𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2         →          (𝑥𝑥 − 𝑎𝑎)2 + (𝑦𝑦 − 𝑏𝑏)2 = 𝑟𝑟2 

You should be able to identify [very quickly] the radius and the centre of any circle 
equation you are given. For example the circle with equation (𝑥𝑥 − 2)2 + (𝑦𝑦 − 3)2 = 25  
has its centre at (2, 3) and its radius is 5 [because 52  = 25,  and be very careful not to 
say its radius is 25 !!] . The circle (𝑥𝑥 − 2)2 + (𝑦𝑦 + 4)2 = 18 has its centre at (2,−4) and  
a radius of √18 = 3√2   

There are other ways of writing the equation of a circle and you should learn to 
recognise them and be able to work out both the radius and centre of a circle given its 
equation.  The most common alternative form of a circle is  𝑥𝑥2 + 𝑦𝑦2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0.  
We will look at a few examples and use “completing the square” to find the centre and 
radius: 

Example 1 

Find the centre and radius of  𝑥𝑥2 + 𝑦𝑦2 + 4𝑥𝑥 + 2𝑦𝑦 − 12 = 0  

We collect the 𝑥𝑥 terms together and the 𝑦𝑦 terms together: 

𝑥𝑥2 + 4𝑥𝑥 +  𝑦𝑦2 + 2𝑦𝑦 − 12 = 0 

And then complete the square for the 𝑥𝑥 terms and also for the 𝑦𝑦 terms: 

𝑥𝑥2 + 4𝑥𝑥 +  𝑦𝑦2 + 2𝑦𝑦 − 12 = (𝑥𝑥 + 2)2 − 4 + (𝑦𝑦 + 1)2 − 1 − 12 = 0  

And rearranging gives us our standard equation: 

 

(𝑥𝑥 + 2)2 + (𝑦𝑦 + 1)2 = 17 

 

So, the centre is at (−2,−1) and the radius is √17 
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Example 2 

Find the centre and radius of  𝑥𝑥2 + 𝑦𝑦2 − 4𝑥𝑥 − 6𝑦𝑦 + 20 = 0 

We go through the same process as above – collect terms and complete the square 
to give: 

(𝑥𝑥 − 2)2 − 4 + (𝑦𝑦 − 3)2 − 9 + 20 = 0 

Which rearranges to give 

(𝑥𝑥 − 2)2 + (𝑦𝑦 − 3)2 = −7 

 

OH NO !!!!! 

 

A moment’s thought shows something has gone wrong. The left-hand side is the sum 
of squares so must always be ≥ 0  but the right-hand side is negative. Well, it turns 
out that there are no real 𝑥𝑥 and 𝑦𝑦 values that make this equation true and so it is not 
the equation of a circle.  The lesson to learn here is that not every equation of the form 
𝑥𝑥2 + 𝑦𝑦2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0 is the equation of a circle. You should be able to work out 
what extra condition we need to place on 𝑎𝑎,𝑏𝑏 and 𝑐𝑐 to ensure that the equation   𝑥𝑥2 +
𝑦𝑦2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0  is a circle.  

 

Example 3  

Find the centre and radius of  2𝑥𝑥2 + 2𝑦𝑦2 − 4𝑥𝑥 − 8𝑦𝑦 − 19 = 0 

Well initially this doesn’t look exactly like 𝑥𝑥2 + 𝑦𝑦2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0.  But we can easily 
divide by 2 to get   𝑥𝑥2 + 𝑦𝑦2 − 2𝑥𝑥 − 4𝑦𝑦 − 19

2
= 0  and then proceed as before to get : 

(𝑥𝑥 − 1)2 − 1 + (𝑦𝑦 − 2)2 − 4 −
19
2

= (𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 =
29
2

  

Which has centre at (1,2) and a radius of �29
2
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Exercise 

Why are the following not equations of circles? 

2𝑥𝑥2 + 3𝑦𝑦2 − 4𝑥𝑥 − 8𝑦𝑦 − 19 = 0 

2𝑥𝑥2 − 2𝑦𝑦2 − 4𝑥𝑥 − 8𝑦𝑦 − 19 = 0 

𝑥𝑥2 + 2𝑦𝑦 + 5 = 𝑦𝑦2 + 4𝑥𝑥 + 7 

Given the equation 𝑝𝑝𝑥𝑥2 + 𝑞𝑞𝑦𝑦2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0  what conditions on 𝑝𝑝, 𝑞𝑞, 𝑎𝑎 ,𝑏𝑏 and 𝑐𝑐 
will make it an equation of a circle ? [this is slightly tricker than it appears – be careful 
and think of what different cases there might be …] 

 

Finally, we will look at a couple of scenarios involving circles that you should be able 
to deal with.  We will do this by working through a couple of examples. 

Example 1  

When is a line tangent to a circle? 

Find the values of 𝑐𝑐  for which 𝑦𝑦 = 2𝑥𝑥 + 𝑐𝑐  is tangent to the circle with equation 
(𝑥𝑥 − 3)2 + (𝑦𝑦 − 2)2 = 9 

This can be solved algebraically [or geometrically with some careful work] but it is good 
to sketch a picture to start with to get an idea of why the question asks for values [not 
just value] and to get a very rough idea of what these values might be.  Here is a 
sketch: 
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Now we can start to think about how we should approach this. In simple terms, if a line 
is tangent to a circle, then it intersects it at only one point. So, if we try to solve the 
equation of the line and the circle simultaneously, we will need to look for the case that 
has only one solution. If you think about it for a moment, the number of ways a line 
can intersect a circle can be  twice, or once, or not at all.  And when you try to solve 
the equation of a line simultaneously with the equation of a circle, you will get a 
quadratic in 𝑥𝑥  [or in 𝑦𝑦 ]. So, putting all this together suggests we try to solve 
simultaneously and then use the discriminant condition to work out the values of 𝑐𝑐 that 
gives one [repeated] root of the quadratic we obtain [think why we expect the 
discriminant to be 0 for two different values of 𝑐𝑐].   

Let’s do that for this question:  substitute 𝑦𝑦 = 2𝑥𝑥 + 𝑐𝑐  into (𝑥𝑥 − 3)2 + (𝑦𝑦 − 2)2 = 9  to 
give (𝑥𝑥 − 3)2 + (2𝑥𝑥 + 𝑐𝑐 − 2)2 = 9  and multiplying out we get 

𝑥𝑥2 − 6𝑥𝑥 + 9 + 4𝑥𝑥2 + 4(𝑐𝑐 − 2)𝑥𝑥 + (𝑐𝑐 − 2)2 = 9 

 

Rearranging 

 

5𝑥𝑥2 + 2(𝑐𝑐 − 7)𝑥𝑥 + (𝑐𝑐 − 2)2 = 0 

 

And we want this to have one repeated root, so the discriminant condition requires 

4(𝑐𝑐 − 7)2 − 20(𝑐𝑐 − 2)2 = 0  

Which then gives  

𝑐𝑐 − 7 =  ± √5 (𝑐𝑐 − 2) 

And from this you can work out the two 𝑐𝑐 values – you can see we have two lines in 
the diagram above, one for reach of the 𝑐𝑐 values we found.  

 

Example 2 

What is the closest distance between a line and a circle? 

Find the closest distance between the line 𝑦𝑦 = 𝑥𝑥 + 11  and the circle (𝑥𝑥 + 2)2 +
(𝑦𝑦 − 3)2  =  9 

There are lots of ways to approach this question. We are going to use a mix of algebra 
and geometry. The first thing we are going to do [which is not necessary but just makes 
things easier to deal with] is to translate the circle so its centre is at the origin and 
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translate the line the same way [convince yourself that this does not change the 
answer]  We are going to replace 𝑥𝑥 by 𝑥𝑥 − 2 and 𝑦𝑦 by 𝑦𝑦 +  3 in both equations to give 
: 

𝑦𝑦 + 3 =  𝑥𝑥 − 2 + 11   and  (𝑥𝑥 − 2 + 2)2 + (𝑦𝑦 + 3 − 3)2  =  9 

Which simplify to  

𝑦𝑦 = 𝑥𝑥 + 6  and   𝑥𝑥2 + 𝑦𝑦2 = 32 

We can sketch these and then use some [simple] geometry to find the shortest 
distance between the line and the circle: 

 

                      

 

From this diagram we can see that the line between (0,0) and 𝑄𝑄(−3,3) will help us find 
the length that we seek. The length of the line between (0,0) and 𝑄𝑄(−3,3) is 3√2   [it 
is √32 + 32] and the length of the radius we know is 3. So, the distance from the line 
to the circle [which is the value we seek] must be 3√2 − 3  
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Exercise 

For example 2, can you find other ways of finding the length required44?   

How would you solve the problem if the equation of the line had a different gradient – 
e.g., find the shortest length between the line 𝑦𝑦 = 2𝑥𝑥 + 15 and the circle (𝑥𝑥 + 2)2 +
(𝑦𝑦 − 3)2  =  9. Try to solve it using a number of different methods. Which method do 
you think is best ?  

 

 
  

 
44 For instance: there is a formula for the shortest  length of a point from a line. You could find the 
distance of the centre of the circle from the line and then subtract the radius length from the result. 
If you choose to take this approach, make sure you can prove and fully understand the equation that 
gives the shortest length between a point and  a line. We do NOT expect you to know this formula in 
the TMUA/ESAT. You could also alter the problem in other ways using algebra: for instance, you 
could ask what 𝑟𝑟 value makes 𝑦𝑦 = 𝑥𝑥 + 6  a tangent to the circle   𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2  and then the answer 
to the question would be 𝑟𝑟 − 3. Can you see why this would work ?  
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MM3.3  
 
Use of the following circle properties:  
 
The perpendicular from the centre to a chord bisects the chord;  

The tangent at any point on a circle is perpendicular to the radius at that point; 

The angle subtended by an arc at the centre of a circle is twice the angle subtended 
by the arc at any point on the circumference; 

The angle in a semicircle is a right angle;  

Angles in the same segment are equal; 

The opposite angles in a cyclic quadrilateral add to 180°; 

The angle between the tangent and chord at the point of contact is equal to the angle 
in the alternate segment. 

 

 

You will notice that we have included these circle theorems twice in the TMUA/ESAT 
specification. They appear both in the M section and also in the MM section. We have 
included them twice deliberately. We occasionally ask questions on circle theorems in 
the TMUA/ESAT and we are aware they are a topic that is often covered [perhaps 
briefly] in introductory maths classes and then forgotten. We do not want you to 
encounter a TMUA/ESAT question on circle theorems and then realise you cannot 
answer it because you have forgotten them. And so we have included them twice – in 
the M section because they appear in introductory maths classes – and in the MM 
section to remind you to review your knowledge of the theorems. 

We expect you to know and be able to use all the theorems we list. You should also 
think about the converse45 of some of the theorems. Whilst we don’t expect you to 
know the proofs of the theorem, you really should make sure you can prove each 
theorem and that you have a deep understanding of the proof [i.e., you must not try to 
learn the proof, rather you need to understand what is going on – what are your 
assumptions, how does the proof work, what geometry is being used etc., etc.]. 

 

 

 

 
45 See the Notes on Logic and Proof 
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There are all sorts of techniques you can use when tackling question that link to circle 
theorems. Here is a list of some techniques you should be comfortable using 

 

1. Angle chasing – filling in all the angles you can using the theorems above and 
by looking for isosceles triangles [often made up of two radii] or right angles 
triangles [in the semicircle]. 
 

2. Rotating the diagram – this can often help you get insights into the question.  
 

3. Adding lines – sometimes adding a tangent or diameter or some other line [e.g., 
a chord] helps you to find the solution. 
 

4. Using dynamic methods – learning to move points around on your diagram in 
a way that does not affect the solution but makes the question easier to solve. 

 

We would recommend you find a site online that helps you play around with circle 
theorems. We do not endorse any sites [so this is not an endorsement!] but we found 
Circle theorems  very useful, especially for dynamic methods. 
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MM4. Trigonometry  
MM4.1.  
 
The sine and cosine rules, and the area of a triangle in the form 1

2
𝑎𝑎𝑏𝑏 sin C. 

The sine rule includes an understanding of the ‘ambiguous’ case (angle-side-side). 
Problems might be set in 2 or 3 dimensions.  

 

 

We will start this section by looking at the area of a triangle and then explore the sine 
rule and the cosine rule. 

A quick note on labelling. We tend to label polygons anticlockwise [not always though 
– and in this section we have varied the labels we have used on triangles in each 
diagram to keep you on your toes!]. For triangles we label corners [and usually angles 
in the respective corners] with capital letters, and the sides opposite corners with 
corresponding  lower-case letters: 

                               

We start with the most basic formula for the area of a triangle. From the diagram below, 
you can see that the area of a triangle is exactly half that of the rectangle so the area 
of the triangle must be  : 

 𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 =  
1
2

  𝑏𝑏𝑎𝑎𝑡𝑡𝑛𝑛 × 𝑎𝑎𝑛𝑛𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑣𝑣 ℎ𝑛𝑛𝑖𝑖𝑔𝑔ℎ𝑡𝑡 =  
1
2

 𝑏𝑏ℎ 
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What about for a triangle where the top corner is not above the base? 

 

                                   

The area is the same, but you must be careful to use vertical height [as shown] above 
the horizontal base and not any part of slanted height. Can you convince yourself using 
geometry that the area is still  1

2
  𝑏𝑏𝑎𝑎𝑡𝑡𝑛𝑛 × 𝑎𝑎𝑛𝑛𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑣𝑣 ℎ𝑛𝑛𝑖𝑖𝑔𝑔ℎ𝑡𝑡 even when the triangle does 

not fit neatly inside a rectangle46 ?  

Let’s now calculate the area of triangle another way using a little bit of trigonometry.  

 

                                      

 

From the diagram you can see that the base of the triangle is length 𝑎𝑎 and the height 
[using trigonometry] is 𝑏𝑏 sin𝐶𝐶.  The area of the triangle must be : 

𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 =  
1
2

 × 𝑏𝑏𝑎𝑎𝑡𝑡𝑛𝑛 × 𝑎𝑎𝑛𝑛𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑣𝑣 ℎ𝑛𝑛𝑖𝑖𝑔𝑔ℎ𝑡𝑡 =
1
2
𝑎𝑎𝑏𝑏 sin𝐶𝐶  

This gives us another formula for the area of a triangle using the length of two sides 
and the angle between the two sides. 

 
46 Hint: you can add an identical triangle to make a parallelogram then chop up and rearrange the 
parallelogram slightly.  What other ways can you use ?  
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From this equation we can easily derive the sine rule [which is essentially, as we shall 
see, a way of saying that the area of a triangle is the same no matter how you choose 
to calculate it].   

Above we showed that the area of a triangle with base 𝑎𝑎 was 1
2
𝑎𝑎 𝑏𝑏 sin𝐶𝐶. If we rotate 

the triangle to make the base 𝑏𝑏, then the area can be written as 1
2
𝑏𝑏 𝑐𝑐 sin𝐴𝐴  and if we 

rotate it again to make 𝑐𝑐 the base, then we can see that the area can be written as 
1
2
𝑐𝑐 𝑎𝑎 sin𝐵𝐵.  These areas must all be the same, and so : 

1
2
𝑎𝑎 𝑏𝑏 sin𝐶𝐶 =  

1
2
𝑏𝑏 𝑐𝑐 sin𝐴𝐴 =

1
2
𝑐𝑐 𝑎𝑎 sin𝐵𝐵 

Which is essentially the sine rule in disguise. If we multiply by 2 and divide by 𝑎𝑎𝑏𝑏𝑐𝑐 we 
get : 

sin𝐴𝐴
𝑎𝑎

=  
sin𝐵𝐵
𝑏𝑏

=  
sin𝐶𝐶
𝑐𝑐

 

 

Which is the more usual form of the sine rule; it also appears the other way up : 

𝑎𝑎
sin𝐴𝐴

=  
𝑏𝑏

sin𝐵𝐵
=  

𝑐𝑐
sin𝐶𝐶

 

 

When do we use the sine rule? 

 

Given Find with one use of the sine rule 

Two angles and one side 
Any other side [note, once given two 
angles, you can calculate the third as 
angles in a triangle add to 180] 

Two sides and one angle [not between 
given sides] Another angle [see below] 

 

In some cases, there is more than one triangle that will fit a given set of data – the sine 
rule then gives us an “ambiguous” result. The ambiguity arises in some cases when 
finding another angle using the sine rule. This is because there are always two angles 
between 0 and 180 that have the same sine value. 

Here is an example of this “ambiguity”: 
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Example 

In triangle 𝐴𝐴𝐵𝐵𝐶𝐶, angle 𝐴𝐴 = 30, 𝑏𝑏 = 6 and 𝑎𝑎 = 4. Find angle 𝐵𝐵 

 

                          

 

Using the sine rule we can write [note we tend to put the unknown on the top]: 

 

sin𝜃𝜃 
6

=
sin 30

4
 

So, we get 

sin𝜃𝜃 =  
6 sin 30 

4
=

3
4
 

 

We obtain two values for 𝜃𝜃 :  48.6  or 180 − 48.6 

Both angles are plausible as when added to 30 they do not exceed 180 

 

 

Exercise 

Explore when this ambiguity arises – what are the conditions for there to be one 
answer, two answers, and no answers to a question giving two sides and one angle 
and asking for the third angle as above? 
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Exercise 

Proof of sine rule using circle theorems … 

The diagram below shows a triangle with a circle drawn around it [you can always 
draw a circle around a given triangle – the centre of the circle will be where the 
perpendicular bisectors of the sides intersect – can you explain why there is always a 
circle and why its centre is where we suggest?]. The radius of the circle is 𝑅𝑅.   

 

                                       

         

Prove using the construction shown as dotted lines [and the appropriate circle 
theorems] that  

2𝑅𝑅 sin𝐵𝐵 = 𝑏𝑏 

And hence 

2𝑅𝑅 =
𝑏𝑏

sin𝐵𝐵
 

 

Use  a similar approach to show that  

2𝑅𝑅 =
𝑏𝑏

sin𝐵𝐵
=

𝑐𝑐
sin𝐶𝐶

=
𝑎𝑎

sin𝐴𝐴
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Now we will turn to look at the cosine rule. The cosine rule is really a more general 
from of Pythagoras’ theorem for non-right-angled triangles [actually, it works for right-
angled triangles too!]  

Here is a right-angled triangle  

                                           

And we know that Pythagoras’ theorem tells us that 𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 

If we distort the triangle just a little bit and keep 𝑏𝑏 and 𝑐𝑐 the same length, then 𝑎𝑎2  won’t 
be the same as 𝑏𝑏2 + 𝑐𝑐2 anymore. We will need a correction term: 

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛   

And we expect the correction term to change as the angles in the triangle change.  

We can work out an exact relationship between the three sides and the angle 𝐴𝐴 
changes: 

                                         

From the diagram [and Pythagoras] we can write: 

(𝑏𝑏 + 𝑥𝑥)2 + 𝑦𝑦2 = 𝑎𝑎2 

And 

𝑥𝑥2 + 𝑦𝑦2 = 𝑐𝑐2 

Combining these gives: 

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 = 𝑏𝑏2 + 𝑐𝑐2 + 2𝑏𝑏𝑥𝑥 
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But  𝑥𝑥 = −𝑐𝑐 cos𝐴𝐴   [make sure you can see why the minus sign is there] 

And so : 

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 cos𝐴𝐴 

 

Which is Pythagoras’ theorem with a correction term. 

 

Let’s explore  this equation, which is known as “the cosine rule” a little: 

First, we note that the equation applies to any set of three sides and an appropriate 
angle in the triangle: 

𝑏𝑏2 = 𝑐𝑐2 + 𝑎𝑎2 − 2𝑎𝑎𝑐𝑐 cos𝐵𝐵 

𝑐𝑐2 = 𝑎𝑎2 + 𝑏𝑏2 − 2𝑎𝑎𝑏𝑏 cos𝐶𝐶 

 

Make sure you note how  𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 and 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 appear in these equations.47 And 
also, how the cosine function takes care of whether the correction term needs to be 
positive or negative [think about how this works and make sure you understand – think 
about how the cosine function can be thought of as a “projection” – see the 
trigonometry section below]  

Sometimes the cosine formula is written with the cosine as the subject [we recommend 
you learn just the first formula above and then manipulate it for each scenario as you 
need]: 

 

cos𝐴𝐴 =   
𝑏𝑏2 + 𝑐𝑐2 − 𝑎𝑎2

2𝑏𝑏𝑐𝑐
 

 

And we can also see that the cosine rule becomes Pythagoras’ theorem if we set the 
angle to 90 [but recall we used Pythagoras’ theorem to prove the cosine rule!]  

 

 

 
47 Look up cyclic permutations. 
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When do we use the cosine formula? 

[note, it is almost always better to use Pythagoras’ and trigonometry if you have a 
right-angled triangle] : 

 

Given Find with one use of the cosine rule 

Three sides Any angle 

 
Two sides and one angle [between given 
sides] 
 

The third side 
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MM4.2.  

Radian measure, including use for arc length and area of sector and segment. 
 
 

Usually, the first method for measuring angles that you will encounter is to use 
degrees. And, as you know, one revolution is 360 degrees. There is nothing special 
about the number 360 [some say it is used as it is roughly the number of days in a 
year] but any other number would also work. We could have 400 units in a complete 
revolution [so 100 units in a right angle]. In fact, there is a measure of angles that uses 
100 to be a right angle – it is called “Gradians”  [you will see a “grad” setting on your 
calculator]. All these angle measures are a bit arbitrary48 but there is one measure for 
angles that is more natural than all the others, and that is “radians”.49 

 

So how big is one radian?  We take a sector of a circle of radius 1 and arc length also 
1 and we define 1 radian to be the angle that is subtended by this arc.  

                                        

Or, if you prefer, equivalently we can say that one revolution is equal to 2π radians 
[because the length of the circumference of a circle of radius 1 is 2π]. So, 1 radian is 
360
2𝜋𝜋

=  57.298°  [often we write “rad” for radians but there is a symbol for radians, like 

 
48 Our decimal system is also a bit arbitrary and based on our having ten fingers. It is a pity that we did not 
evolve to have 12 fingers [six on each hand] as base 12 would be a nice system to work in. Also, two more 
arms would be useful, but evolution did not anticipate mobile phones and shopping. 
49 By “more natural” we a mean that it is the most likely measure any alien civilization would use. If you know 
any Martians, you can check our assertion. There is more to it than that. All the differentials and integrals 
involving trigonometry  you will [or already have] learned in calculus are only true if the angle is in radians. So 
d
d𝑦𝑦

sin 𝑥𝑥 = cos𝑥𝑥 for 𝑥𝑥 in radians. We do not require you to know about calculus with trigonometry in the 

TMUA/ESAT but if we did, we would ask questions to test your understanding of this. It is worth your exploring 
why we need to use radians to make the rules work. And, you should think about what differentiating and 
integrating would look like if 𝑥𝑥 were in degrees instead of radians. You should assume angles are given in 
radians unless told otherwise when doing calculus.  
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there is a symbol for degrees, but it tends not to be used that much. The symbol is a 
superscript “c” :  1 rad = 1c ] 

We can convert from degrees to radians and vice-versa very easily by recalling one 
revolution is either 360 degrees or 2𝜋𝜋 rad.  

𝜽𝜽 degrees to radians  

𝜃𝜃 degrees is 𝜃𝜃
360

  fraction of one full revolution and one revolution is 2𝜋𝜋 radians,  so the 
conversion must be  

𝜃𝜃 degrees = 𝜃𝜃
360

× 2𝜋𝜋 radians 

 

𝜶𝜶 radians to degrees 

By the same argument as above, we can convert 𝛼𝛼 radians to degrees 

 

𝛼𝛼 radians = 𝛼𝛼
2𝜋𝜋

× 360 degrees 

 

You ought to know some standard conversions [learn them!]  

 

Degrees Radians 

30 
𝜋𝜋
6

 

45 
𝜋𝜋
4

 

60 
𝜋𝜋
3

 

90 
𝜋𝜋
2

 

180 𝜋𝜋 

360 2𝜋𝜋 
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Areas and arc lengths 

You need to know [and understand] the formulae for arc length and area for a sector 
with an angle 𝛼𝛼 radians: 

𝑎𝑎𝑟𝑟𝑐𝑐 𝑣𝑣𝑛𝑛𝑛𝑛𝑔𝑔𝑡𝑡ℎ = 𝑟𝑟𝛼𝛼 

 

𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 𝑜𝑜𝑓𝑓 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟 =
1
2
𝑟𝑟2𝛼𝛼 

Make sure you can prove both these formulae [and understand how the proofs work] 
and that you know how to use both formulae. We will set out the proofs below but think 
about it before taking a peek. 

                                 

To prove the formulae in each case we start by recalling that 𝛼𝛼 radians is 𝛼𝛼
2𝜋𝜋

  fraction 
of a whole circle. 

So, the arc length in the picture must be  

𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑢𝑢𝑚𝑚𝑓𝑓𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛 × 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑣𝑣𝑛𝑛 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡𝑝𝑝𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑔𝑔 𝑡𝑡𝑜𝑜 𝑎𝑎𝑟𝑟𝑐𝑐 

which gives 

𝑎𝑎𝑟𝑟𝑐𝑐 𝑣𝑣𝑛𝑛𝑛𝑛𝑔𝑔𝑡𝑡ℎ = 2𝜋𝜋𝑟𝑟 ×
𝛼𝛼

2𝜋𝜋
= 𝑟𝑟𝛼𝛼 

And the area of the sector must be : 

𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 𝑜𝑜𝑓𝑓 𝑤𝑤ℎ𝑜𝑜𝑣𝑣𝑛𝑛 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑣𝑣𝑛𝑛 × 𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑣𝑣𝑛𝑛 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑚𝑚𝑎𝑎𝑘𝑘𝑛𝑛𝑡𝑡 𝑢𝑢𝑝𝑝 𝑡𝑡ℎ𝑛𝑛 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟 

 which gives 

𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 𝑜𝑜𝑓𝑓 𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟 = 𝜋𝜋𝑟𝑟2  ×
𝛼𝛼

2𝜋𝜋
=  

1
2
𝑟𝑟2𝛼𝛼 
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MM4.3  

The values of sine, cosine, and tangent for the angles 0°, 30°, 45°, 60°, 90°. 

 
 

Learn these – standard triangles – and extend them to other ranges [note: tan 90 is 
not defined] 

You should make sure you know the values listed, or that you can work them out 
quickly by drawing appropriate triangles.  You should make sure you can identify them 
on a sketch of sin, cos or tan.  

 

For 45 you can use the isosceles right-angled triangle: 

                                          

And for the 30 and 60 ones, you can use half of an equilateral triangle with sides of 
length 2: 
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MM4.4 

The sine, cosine, and tangent functions; their graphs, symmetries, and periodicity.  

 

You should make sure you know the standard graphs of sine, cosine, and tangent very 
well – and, as mentioned, all their symmetries and periodicities. Make sure you can 
sketch them for degrees and for radians. We would recommend you use a good graph 
sketching package [e.g., DESMOS GRAPHING ] and explore each of the graphs and 
also when they cross each other, what happens if you modify the graphs [see more 
later under graph sketching].  

Exercise  

[use a graph sketching tool to check your answers]  

Sketch each of the following using a graph sketching package; sketch each in degrees 
and then radians using the ranges −720° < 𝑥𝑥 ≤ 720°  and −2𝜋𝜋 < 𝑥𝑥 ≤ 2𝜋𝜋 [this is not a 
typo: these are not the same ranges!] 

𝑦𝑦 = sin 𝑥𝑥        𝑦𝑦 = 2 sin 𝑥𝑥           𝑦𝑦 = sin 2𝑥𝑥 

 

 𝑦𝑦 = cos 𝑥𝑥       𝑦𝑦 = 2 cos 𝑥𝑥          𝑦𝑦 = cos 2𝑥𝑥 

 

         𝑦𝑦 = tan 𝑥𝑥       𝑦𝑦 = 2 tan 𝑥𝑥            𝑦𝑦 = tan 2𝑥𝑥          

 

Sketch on the same axes 𝑦𝑦 = sin 𝑥𝑥   and 𝑦𝑦 = cos 𝑥𝑥 for −2𝜋𝜋 < 𝑥𝑥 ≤ 2𝜋𝜋. For what values 
of 𝑥𝑥 in the range does cos 𝑥𝑥 = sin 𝑥𝑥 ? And for what values does cos 𝑥𝑥 = −sin 𝑥𝑥  

Sketch each of the following for −2𝜋𝜋 < 𝑥𝑥 ≤ 2𝜋𝜋   and pay careful attention to what the 
number 2 does and what the 𝜋𝜋

6
  does to each graph. 

𝑦𝑦 = sin �2𝑥𝑥 +
𝜋𝜋
6
�  

𝑦𝑦 = sin �2𝑥𝑥 −
𝜋𝜋
6
� 

𝑦𝑦 = sin 2 �𝑥𝑥 +
𝜋𝜋
6
� 

𝑦𝑦 = sin 2 �𝑥𝑥 −
𝜋𝜋
6
� 
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A useful way to think of sine and cosine is as “projection operators”. They project lines 
onto the 𝑥𝑥-axis or the 𝑦𝑦-axis.  

In these diagrams the line coming out at an angle always has positive length. The 
cosine function projects the line onto the 𝑥𝑥 axis; and the sine function projects the line 
onto the 𝑦𝑦 axis.  

Here are some diagrams to illustrate what we mean: 

  
Above, in the second diagram, 𝑏𝑏 cos𝜃𝜃  is negative. 

 

    
 Above, in the second diagram, 𝑏𝑏 sin𝜃𝜃 is negative. 

 

You can see that the diagrams are essentially the “CAST” diagrams you might have 
drawn when solving trigonometric equations. They also help you understand why 
cosine and sine vary in sign for different angles. 
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Tangent also has an interpretation – it converts from 𝑥𝑥 -axis projections to 𝑦𝑦-axis 
projections. Here are a couple of diagrams to illustrate what we mean: 

 

 

 

Exercise 

What is the sign of  𝑥𝑥 tan𝜃𝜃 in each of the diagrams above? Can you explain your 
answer ? [Hint: think carefully about the sign of the 𝑥𝑥 value in each diagram and the 
sign of the 𝑦𝑦 value in each diagram]. How does your answer fit with the sign of tan𝜃𝜃  
when 90 < 𝜃𝜃 < 180 ? And what about 270 < 𝜃𝜃 < 360 ? 
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MM4.5 

Knowledge and use of 

                                             tan𝜃𝜃 = sin𝜃𝜃
cos𝜃𝜃

  

                                            sin2 𝜃𝜃 + cos2 𝜃𝜃 = 1 

 

There are many ways to define trigonometric functions. Usually, we first meet 
trigonometry in relation to right-angled triangles, and if we use this approach then the 
formula sin2 𝜃𝜃 + cos2 𝜃𝜃 = 1  is clearly just a version of Pythagoras’ Theorem. We have 
drawn a diagram to illustrate this. 

                           
You should notice that whilst we have drawn a triangle with an acute angle 𝜃𝜃, the 
formula applies to ANY angle.  Can you justify why it must apply to ANY angle using 
the “CAST” style diagrams we drew earlier? 

In addition, you should know that tan𝜃𝜃 = sin𝜃𝜃
cos𝜃𝜃

  and it is sufficient for the TMUA/ESAT 
to realise this comes from the standard definition of trigonometric functions you tend 
to be told when you first learn them: 

sin𝜃𝜃 =  𝑂𝑂
𝐻𝐻

      cos𝜃𝜃 =  𝐴𝐴
𝐻𝐻

     tan𝜃𝜃 =  𝑂𝑂
𝐴𝐴
 

 

So, it is “obvious” that  

tan𝜃𝜃 =  
𝑂𝑂
𝐴𝐴

=  
𝑂𝑂/𝐻𝐻
𝐴𝐴/𝐻𝐻

=  
sin𝜃𝜃
cos 𝜃𝜃

 

 

You should make sure that you understand how the signs of the three trigonometric 
functions change as the signs of 𝐴𝐴 and 𝑂𝑂 change in CAST diagrams [and note that 
CAST diagrams always have the 𝐻𝐻 value as positive, usually we set 𝐻𝐻 = 1]   
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MM4.6  
 
Solution of simple trigonometric equations in a given interval (this may involve the use 
of the identities in MM4.5); for example: tan 𝑥𝑥 = − 1

√3
 for –𝜋𝜋 < 𝑥𝑥 < 𝜋𝜋;  

sin2 �2𝑥𝑥 + 𝜋𝜋
3
� = 1

2
 for −2𝜋𝜋 < 𝑥𝑥 < 2𝜋𝜋; 12 cos2 𝑥𝑥 + 6 sin 𝑥𝑥 − 10 = 2 for 0° < 𝑥𝑥 < 360°. 

 
 
 
You should be comfortable solving equations involving trigonometry and using either 
graphical or CAST type methods to list the full set of solutions. We will look at a couple 
of examples and make some useful comments as we work through them. There are 
lots of approaches to solving equations with trigonometry – you will have learnt some 
– and you might find you prefer methods that are different from the ones we use and 
that is fine. What is important is that you make sure you are comfortable with a range 
of methods and that you do not lose or inadvertently add extra solutions in whatever 
approach you decide to take.  

 
 
Example   
 
Solve sin2(2𝑥𝑥 + 60) = 1

4
  for −360 < 𝑥𝑥 < 360 

 

First, we take the square root of both sides and recall that, in this case, we need to 
consider both positive and negative square roots.50 We get two equations to solve  

sin(2𝑥𝑥 + 60) =  1
2
     and     sin(2𝑥𝑥 + 60) =  −1

2
     

Let’s look at the first one. We begin by getting the basic solution [essentially, the one 
that your calculator would give you if you put in sin−1 1

2
 ].  We know from earlier that the 

basic solution here is 30 degrees [or 𝜋𝜋
6

  radians ]. 

We can illustrate this solution on a graph or on a CAST diagram. WE have also added 
the next solution of 150 degrees [You should be comfortable using both, even though 
you might prefer one method over the other] 

 

 
50 Don’t get confused with what we mentioned about the square root symbol always meaning the positive 
square root.  

95



 
 

                    
Now we need to be careful as it is very easy to make an error and lose some of the 
solutions. We will first look at what we should do to get the full set of solutions, and 
then we will look at a common error to see how easy it is to lose solutions by doing 
things in the wrong order: 

We have  a basic solution of  

2𝑥𝑥 + 60 = 30 

But as we need all solutions between −360 < 𝑥𝑥 < 360  we are going to list some more 
solutions [BEFORE we do any rearranging] ; and because we will be diving by 2 and 
subtracting 60 to get 𝑥𝑥 we need to go beyond the range −360 to 360: 

 

We will list all the relevant solutions [and at the ends of our list we might just list ones 
that will not be relevant just to be sure – in red]   

2𝑥𝑥 + 60 =  −690 ,−570 ,−330,−210  , 30, 150, 390, 510, 750, 870   

 Rearranging to get 𝑥𝑥 

𝑥𝑥 =  −375 ,−315 ,−195,−135 ,−15, 45, 165, 225, 345, 405   

And those in the range −360 < 𝑥𝑥 < 360: 

𝑥𝑥 =  −315 ,−195,−135 ,−15, 45, 165, 225, 345   
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As we mentioned we will also look at a common error that can mean you lose solutions. 
If you rearrange the basic solution first and then look for general solutions, you will 
lose some of the solutions. Let’s look at this INCORRECT way of solving:   

We start with  
2𝑥𝑥 + 60 = 30 

And rearrange to get  

𝑥𝑥 = −15   

And we then use this to generate all the other solutions for 𝑥𝑥 in the range −360 < 𝑥𝑥 <
360. When we do this, we get  

 

𝑥𝑥 =  −165,−15, 195, 345 

We can see how we got these using a simple graph: 

 
 

And you can see things have gone wrong. So better to find all your solutions first and 
then rearrange to find 𝑥𝑥 at the end. 

 

 

We have so far only solved half the question, as we also need to deal with 
sin(2𝑥𝑥 + 60) =  −1

2
     but we will leave that as an “exercise for the reader”. 
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Exercise 

Repeat the above solutions for the same question but in radians: 

sin2 �2𝑥𝑥 + 𝜋𝜋
3
� = 1

4
  for −2𝜋𝜋 < 𝑥𝑥 < 2𝜋𝜋 

 
 

Often trigonometry is mixed with other topics such as quadratics or cubics or 
inequalities  etc. In those cases you often need to aim to get to expressions of the form 
sin?  =  𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟  or cos ?  =  𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟  or tan?  =  𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟  

Here is an example: 

Example 

Solve  12 cos2 𝑥𝑥 + 6 sin 𝑥𝑥 − 10 = 2 for 0° < 𝑥𝑥 < 360°. 

This looks like a quadratic but has both sin and cos in it. The first thing we should51 do 
is convert the cos to sin using cos2 𝑥𝑥 = 1 − sin2 𝑥𝑥: 

12(1 − sin2 𝑥𝑥) + 6 sin 𝑥𝑥 − 10 = 2  

Rearrange [and put sin 𝑥𝑥 = 𝑆𝑆  to simplify the “look”]  

12𝑆𝑆2 − 6𝑆𝑆 = 0 

Factorise and solve for 𝑆𝑆: 

6𝑆𝑆(2𝑆𝑆 − 1) = 0 

So, we get 𝑆𝑆 =  sin 𝑥𝑥 = 0   or   𝑆𝑆 = sin 𝑥𝑥 =  1
2
  and solutions 𝑥𝑥 =  30, 150, 180  

 

 

  

 
51 Often mathematicians will think of an idea and check it roughly in their heads first before proceeding to 
check the idea is likely to work. Sometimes, an idea that seems like it might work well will flounder later and 
then you will need to start again and rethink.  STEP mathematics questions are a useful resource to help you 
learn to think through different approaches to questions. See https://www.ocr.org.uk/students/step-
mathematics/preparing-for-step/ 
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MM5. Exponentials and Logarithms  
MM5.1 

𝑦𝑦 = 𝑎𝑎𝑥𝑥 and its graph, for simple positive values of 𝑎𝑎. 

 

 

Make sure you know what the graph of 𝑦𝑦 = 𝑎𝑎𝑥𝑥 looks like for different values of 𝑎𝑎. Look 
carefully at 0 < 𝑎𝑎 < 1  and 𝑎𝑎 = 1  and 1 < 𝑎𝑎  and make sure you can explain their 
features. What happens to the graphs as 𝑎𝑎 gets bigger and bigger? Use a graph 
drawing package [e.g., DESMOS GRAPHING] to help you if necessary but make sure 
you think through the results in each and every case. 

Notice that we do not look at cases when 𝑎𝑎 < 0.   We discussed why we do not look 
at this case in the discussions earlier when we looked at indices so it might be useful 
to revisit that discussion. 
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MM5.2 

Laws of logarithms:  

𝑎𝑎𝑏𝑏 = 𝑐𝑐 ⟺ 𝑏𝑏 = log𝑎𝑎 𝑐𝑐 

log𝑎𝑎 𝑥𝑥 + log𝑎𝑎 𝑦𝑦 = log𝑎𝑎(𝑥𝑥𝑦𝑦) 

log𝑎𝑎 𝑥𝑥 − log𝑎𝑎 𝑦𝑦 = log𝑎𝑎 �
𝑥𝑥
𝑦𝑦�

 

𝑘𝑘 log𝑎𝑎 𝑥𝑥 = log𝑎𝑎(𝑥𝑥𝑘𝑘) 

including the special cases: 

log𝑎𝑎
1
𝑥𝑥

= − log𝑎𝑎 𝑥𝑥 

log𝑎𝑎 𝑎𝑎 = 1 

Questions requiring knowledge of the change of base formula will not be set. 

 

 

Logarithms are very closely related to indices; in fact, they are really the “inverse of 
indices”. They tell you what power a number has to be raised to rather than raising a 
number to a power. Let’s unpack that idea a little bit to get an idea of how logs work.  
We will start with a few examples to help you get the feel for things and then we will 
look at logarithms graphically; and then we will move on to exploring [briefly!] how the 
logarithm rules work.  

 

But before we begin, a teeny little bit of history is useful. Before calculators existed, 
doing lots of calculations, especially with big numbers, could be complicated. So, 
logarithms were invented to make the calculations easier [it is worth looking at the 
history a little bit to understand how clever and inventive mathematicians can be – see 
the Wikipedia page on the History of Logarithms. Even if you are not keen on history, 
the background to logarithms is worth exploring.] 

 

Here are some examples using log10.  log10 tells you what power 10 needs to be raised 
to get a given number: 

log10 10 = 1   because 10 needs to be raised to the power of 1 to get 10:  101 = 10 

log10 100 = 2   because 10 needs to be raised to the power of 2 to get 100: 102 = 100 

100



 
 

log10 1000 = 3 because 10 needs to be raised to the power of 3 to get 1000: 103 =
1000 

 log10 27 = 1.431363764 … …  because 101.431363764… = 27  [you can check this with 
your calculator] 

 

We can also try using logs to other “bases”.  log2  tells you what power 2 needs to be 
raised to get a given number: here are some other [reasonably obvious] examples: 

 

log2 32 = 5   because 2 needs to be raised to the power of 5 to get 32 :  25 = 32 

log2
1
2

= −1   because 2 needs to be raised to the power of −1 to get 1
2
 :  2−1 = 1

2
 

 

So, we have in general the following relationship between log and powers: 

 

                                     𝐥𝐥𝐥𝐥𝐥𝐥𝒂𝒂 𝒄𝒄 = 𝒃𝒃     says the same as   𝒂𝒂𝒃𝒃 = 𝒄𝒄 

 

You should make sure you are very familiar and comfortable with this idea.  

 

A few things to note about this [things might change when you meet more mathematics 
but then definitions get honed and changed too!]:  

• We only take logs with a positive base number:   so 𝑎𝑎 > 0  [but 𝑎𝑎 ≠ 1] 
• We can only take the logs of positive numbers:   so 𝑐𝑐 > 0 
• The log of a number can be negative: so 𝑏𝑏 can be any number [even 0]  

You should be able to work out why all three of these statements apply – look back to 
our discussion on indices if you are not sure. It is important to remember that the log 
function is not defined for negative numbers – that is we must have 𝑐𝑐 > 0. [This was 
important in a TMUA/ESAT question from a few years ago52] 

 

 

 
52 Look at TMUA paper 1 2021 question 20  
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Exercise 

work out each of the following:  

log5 52   ;  log3 35  ;  log7 √7   

 

 

We can take a brief look at logs and graphs. We will work with base 2 as that gives 
nice graphs53 

First, we draw 𝑦𝑦 = 2𝑥𝑥  and look at a few values 

 

                          

From this, you can see that 2𝑥𝑥  takes numbers from the 𝑥𝑥-axis and gives us numbers 
on the 𝑦𝑦-axis : it maps  𝑥𝑥  →   2𝑥𝑥 . And also, if you start on the 𝑦𝑦-axis [say with 8] and 
trace back to what number corresponds to it on the 𝑥𝑥-axis you get the log of the 
number of the 𝑦𝑦-axis, namely 3.  So going backwards from the 𝑦𝑦-axis to the 𝑥𝑥-axis we 
get 𝑦𝑦 → log2 𝑦𝑦 

We can now draw the log graph as it is just the graph of 𝑦𝑦 = 2𝑥𝑥  with the 𝑥𝑥 and 𝑦𝑦 axes 
swapped: 

 

 
53 Use a graph package to draw 𝑦𝑦 = 2𝑥𝑥  and 𝑦𝑦 = 10𝑥𝑥  to see how fast they grow [that is exponential growth]  
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A few things to note here too: 

 

• You can see the graph is only defined for 𝑥𝑥 > 0 as we expected. 
• The graph of 𝑦𝑦 = log2 𝑥𝑥  crosses the 𝑥𝑥-axis at 1. Can you explain why?54 

 

Now we can look at all the logarithm rules we expect you to know – you should make 
sure you understand them [i.e. you know how they work and where they come from] 
and you should make sure you can use them correctly. 

 

We start with   log𝑎𝑎 𝑥𝑥 + log𝑎𝑎 𝑦𝑦 = log𝑎𝑎(𝑥𝑥𝑦𝑦) 

This is really the logarithm equivalent of  𝑎𝑎𝑎𝑎𝑎𝑎𝑞𝑞 = 𝑎𝑎𝑎𝑎+𝑞𝑞  [think about how this relates to 
the log equation] 

 We can see how this equation works as follows: 

𝑎𝑎log𝑎𝑎 𝑥𝑥 + log𝑎𝑎 𝑦𝑦 = 𝑎𝑎log𝑎𝑎 𝑥𝑥 𝑎𝑎log𝑎𝑎 𝑦𝑦 = 𝑥𝑥𝑦𝑦 = 𝑎𝑎log𝑎𝑎(𝑥𝑥𝑦𝑦) 

And make sure you can see what rule we have used at each stage of this. Note we 
have used one idea  that we haven’t drawn attention to as yet : 𝑎𝑎log𝑎𝑎 𝑥𝑥 = 𝑥𝑥 . We hope 
this idea is “obvious” as it is essentially the very definition of a logarithm. 

 

 

 
54 Because 20 = 1 and so log2 1 = 0 
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We can now look at the other rules in the same way : 

 

log𝑎𝑎 𝑥𝑥 − log𝑎𝑎 𝑦𝑦 = log𝑎𝑎 �
𝑥𝑥
𝑦𝑦
�  

𝑎𝑎log𝑎𝑎 𝑥𝑥−log𝑎𝑎 𝑦𝑦  =  𝑎𝑎log𝑎𝑎 𝑥𝑥 𝑎𝑎− log𝑎𝑎 𝑦𝑦 =  𝑎𝑎
log𝑎𝑎 𝑥𝑥

𝑎𝑎log𝑎𝑎 𝑦𝑦
  = 𝑥𝑥

𝑦𝑦
= 𝑎𝑎log𝑎𝑎�

𝑥𝑥
𝑦𝑦�  

 

𝑘𝑘 log𝑎𝑎 𝑥𝑥 = log𝑎𝑎(𝑥𝑥𝑘𝑘)  

𝑎𝑎𝑘𝑘 log𝑎𝑎 𝑥𝑥 = (𝑎𝑎log𝑎𝑎 𝑥𝑥)𝑘𝑘 = 𝑥𝑥𝑘𝑘 = 𝑎𝑎log𝑎𝑎�𝑥𝑥𝑘𝑘�  

 

log𝑎𝑎
1
𝑥𝑥

= − log𝑎𝑎 𝑥𝑥  

𝑎𝑎− log𝑎𝑎 𝑥𝑥 =  1
𝑎𝑎log𝑎𝑎 𝑥𝑥

=  1
𝑥𝑥

 = 𝑎𝑎log𝑎𝑎
1
𝑥𝑥  

 

And finally    

log𝑎𝑎 𝑎𝑎 = 1   

which should be “obvious” because 𝑎𝑎1 = 𝑎𝑎 

The specification mentions the change of base formula and says it will not be 
examined in TMUA/ESAT. Nevertheless, it is a useful formula and we recommend you 
have it in your “remembered formulae” maths kit, and make sure you can derive it and 
understand it too! We will take a brief look at the formula here [but you can skip this 
section as it is not part of the TMUA/ESAT and we won’t ask questions that depend 
on it]. 
 
The change of base formula allows you to convert from a log with one base to a log 
with another base; for instance, changing from base 4 to base 7:  log4 to log7. 

 

Before we explore this idea, have a think about how you might go about this task; for 
instance, how might you find log4 23 in terms of log7 23 ?  
 
Let’s start with the example we just gave:  
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Example 
 
find log4 23 in terms of log7 23. 
 
Let log4 23 = 𝑝𝑝   
 
then 4𝑎𝑎 = 23  
 
take log7 of both sides:   log7 4𝑎𝑎 = log7 23 
 
which gives  𝑝𝑝 log7 4 = log7 23 
  
so 𝑝𝑝 = log4 23 = log7 23

log7 4
 

 

 

We can use the same method to derive the change of base formula: 

 

Example 

Change from log𝑎𝑎 𝑏𝑏  to  logc 𝑏𝑏 

Let  𝑝𝑝 = log𝑎𝑎 𝑏𝑏  

then 𝑎𝑎𝑎𝑎 = 𝑏𝑏 

take logc of both sides:  log𝑐𝑐 𝑎𝑎𝑎𝑎 = log𝑐𝑐 𝑏𝑏 

which gives  𝑝𝑝 log𝑐𝑐 𝑎𝑎 = log𝑐𝑐 𝑏𝑏 

so 𝑝𝑝 = log𝑎𝑎 𝑏𝑏 =  log𝑐𝑐 𝑏𝑏
log𝑐𝑐 𝑎𝑎 

 

and this gives us the change of base formula: 
 
 

log𝑎𝑎 𝑏𝑏 =  
log𝑐𝑐 𝑏𝑏
log𝑐𝑐 𝑎𝑎 
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And as a final note, this leads to one more useful formula  if we set 𝑐𝑐 = 𝑏𝑏: 
 

log𝑎𝑎 𝑏𝑏 =  
log𝑏𝑏 𝑏𝑏
log𝑏𝑏 𝑎𝑎 

 

 
and as log𝑏𝑏 𝑏𝑏 = 1  we have : 
 
 

log𝑎𝑎 𝑏𝑏 =  
1

log𝑏𝑏 𝑎𝑎 
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MM5.3   

The solution of equations of the form 𝑎𝑎𝑥𝑥 = 𝑏𝑏, and equations which can be reduced to 
this form, including those that need prior algebraic manipulation; for example,  32𝑥𝑥 = 4 
and 25𝑥𝑥 − 3 × 5𝑥𝑥 + 2 = 0. 

Example 

Solve:  52𝑥𝑥 = 27 

We will solve this exactly55  

We can take logs of both sides, but we need to decide which base is best – we could 
use base 5 here or [because 27 = 33]  we could use base 3. We will try both 
approaches just for completeness56: 

Approach 1: 

Take log5 of both sides: 

log5 52𝑥𝑥 = log5 27 = log5 33  

Simplifying: 

2𝑥𝑥 = 3 log5 3  

and so 

𝑥𝑥 = 3
2

log5 3  

Approach 2: 

Take log3 of both side: 

 log3 52𝑥𝑥 = log3 27 = log3 33 

Simplifying: 

2𝑥𝑥 log3 5 = 3  

And so    𝑥𝑥 = 3
2 log3 5

  

 
55 Exactly means we will find an expression for the value of 𝑥𝑥 rather than calculating [using a calculator] and 
then rounding the answer. You should be aware that many log values are irrational [like surds] and so cannot 
be expressed precisely as a decimal. That is why we often use surds and log expressions rather than rounded 
numerical values. 
56 You can check these two approaches give the same value using the change of base formula. 
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MM6.   Differentiation  
MM6.1  

The derivative of 𝑓𝑓(𝑥𝑥) as the gradient of the tangent to the graph 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at a point. 

In addition: 

            Interpretation of a derivative as a rate of change; 

            Second-order derivatives; 

            Knowledge of notation:  𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

,  𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 , 𝑓𝑓′(𝑥𝑥), and 𝑓𝑓′′(𝑥𝑥). 

Differentiation from first principles is excluded. 

 

 

In order to understand what derivative is, you need to have a good grasp of the notion 
of a “rate of change”. We will explore this idea briefly. You will be used to ideas such 
as speed, and speed is a rate of change. Speed tells you how fast distance is changing 
compared to time: a speed of 3m/s means that distance is changing at a rate of 3m 
for every one second of time that elapses. So, rates of change tell you how fast one 
measure changes compared to another measure. Usually, we express rate of change 
as “how many units of one thing change per single unit of another”. Speed is “how 
much distance changes for every single unit change of time”. Acceleration is another 
example of a rate of change: it tells you how much the speed changes [m/s] for every 
one unit of time [s]: acceleration is usually measured in metres-per-second changed 
for every second of time and this is usually written [slightly confusingly ] as metres per 
second per second or m/s/s and often the “per second per second” is changed to 𝑡𝑡−2 
  

Gradients are also rates of change. Recall we said earlier that “we can think of the 
gradient as telling us how much we have to go vertically to get back on the line for 
every 1 unit we move horizontally from a point of the line”. In other words, gradient is 
the rate of change of 𝑦𝑦 compared to [or, with respect to] 𝑥𝑥. The gradient tells us how 
much 𝑦𝑦 changes for every one unit change in 𝑥𝑥. So gradient is just a rate of change. 

You should be able to understand why the gradient of a distance-time graph will give 
you speed, and the gradient of a speed-time graph will give you acceleration.57  

 
57 We have ignored the vector vs scalar issues here.  
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Now you have an idea that gradient is just a rate of change, we need to look at what 
a rate of change for a curve might mean. Actually, we will look at what we mean by 
the rate of change of a curve at a point on the curve; and recall we know what we 
mean by the rate of change for a straight line – it is its gradient.  

We define the rate of change at a point on a curve as being the gradient of the tangent 
to the curve at that point. Intuitively this definition should make sense – it is worth your 
spending some time convincing yourself that this is the best definition. In fact, the 
definition gives rise to the interpretation of differentiation that we shall look at below – 
and if you have dealt with differentiation from first principles [which is not on the 
TMUA/ESAT specification] you will have seen how this leads to the interpretation of 
differentiation that we set out next. 

Now we turn to look at how to find the differential of an expression and how we should 
understand what the differential of an expression means.  

Let’s start by thinking about what the differential mean. You already know that when 
you are given an expression such as 𝑦𝑦 = 𝑥𝑥3 + 7𝑥𝑥2 − 3𝑥𝑥 + 11  you can find what 𝑦𝑦 
value corresponds to a given 𝑥𝑥  value by substituting the given 𝑥𝑥  value into the 
expression. What then does 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
  tell you? In this case we have 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
= 3𝑥𝑥2 + 14𝑥𝑥 − 3  and 

this tells you the gradient of the curve [its rate of change at a point] for any given 𝑥𝑥 
value. And recall this is gradient of the tangent to the curve at that point.  

So, the 𝑦𝑦 = ⋯   gives you 𝑦𝑦 values once you have an 𝑥𝑥 value; and the 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= ⋯  gives 
you gradients [or rates of change] of the curve [the tangent to the curve] at the point 
corresponding to the given 𝑥𝑥 value.   

Below we will see why calculating the gradient of a curve at a point is so useful.  

As well as knowing what differentiation tells us, you should make sure you are familiar 

with the various notation used for differentiation. We expect you to know 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

,  𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 , 

𝑓𝑓′(𝑥𝑥), and 𝑓𝑓′′(𝑥𝑥). 58 

Although we do not use it in the TMUA/ESAT, you should also be aware of the “dot” 
notation for differentiation. The dot notion tends to be used in physics [and mechanics] 
when differentiating with respect to time [i.e.  time is on the 𝑥𝑥-axis]:  for instance 𝑑𝑑𝑎𝑎

𝑑𝑑𝑡𝑡
 

might be written as �̇�𝑡, and 𝑑𝑑
2𝑎𝑎

𝑑𝑑𝑡𝑡2
   as �̈�𝑡 

You will note that the specification in this section says “second-order derivatives”; we 
will explain what we expect you to know about these below.  

 

 
58 Note where the two 2s go in the notation: 𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2
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MM6.2.  

Differentiation of 𝑥𝑥𝑛𝑛 for rational n, and related sums and differences. This might 
require some simplification before differentiating. 

For example, the ability to differentiate an expression such as  (3𝑥𝑥+2)2

𝑥𝑥
1
2

  

 

 

In the TMUA/ESAT, we expect you to be able to differentiate simple expressions 
involving sums of powers of 𝑥𝑥 or expressions that can be simplified to sums of powers 
of 𝑥𝑥. We do NOT expect you to be able to differentiate trigonometric expressions or 
use rules like the chain rule, the product rule etc. We have kept to the scope of what 
we expect you to be able to differentiate both narrow and simple because we want to 
be able to test your understanding of the topics rather than how good you are using 
standard algorithms. 

We expect you to know the rule for differentiating a power of 𝑥𝑥 : 

d
d𝑥𝑥

 𝑥𝑥𝑛𝑛 = 𝑛𝑛𝑥𝑥𝑛𝑛−1  

And notice that we use d
d𝑥𝑥

  to mean “differentiate this”. 

And [if you have looked at differentiation from first principles, which is not on the 
TMUA/ESAT specification!] you should think about why the result when you 
differentiate 𝑥𝑥𝑛𝑛 is actually �𝑛𝑛1�𝑥𝑥

𝑛𝑛−1 when 𝑛𝑛 is an integer. 

In general, if you are not using some of the more advanced rules such as the chain 
rule or product rule, the best thing to do when differentiating a given expression is to 
simplify first to make it into a sum of powers of 𝑥𝑥 and then differentiate term by term. 
In fact, one thing we have not yet mentioned [because it is usually taken as obvious in 
a first course in calculus59] is that you can differentiate term by term and add up the 
result to get the differential of an expression. For instance, you can do this: 

 d
d𝑥𝑥

(𝑥𝑥3 + 7𝑥𝑥2 − 3𝑥𝑥 + 11) = d
d𝑥𝑥
𝑥𝑥3  + d

d𝑥𝑥
 7𝑥𝑥2 −  d

d𝑥𝑥
 3𝑥𝑥 + d

d𝑥𝑥
 11 = 3𝑥𝑥2 + 14𝑥𝑥 − 3 + 0    

 
59 It is usually somewhat dangerous to assume something is obvious in mathematics until you have spent time 
convincing yourself that it is.  Many mistakes in more advanced mathematics can arise when a technique or 
idea is used incorrectly because it seemed obvious to use it that way: for instance, it might seem “obvious” to 
write something like (𝑥𝑥 + 𝑦𝑦)2 = 𝑥𝑥2 + 𝑦𝑦2 but it is, in fact,  generally mathematical bunkum. Mathematicians 
sometimes use words such as “trivial” and “obvious” but what they often mean is that they have thought 
deeply about it, often for some time [even weeks or months or years], and only after all this deep thought is 
the idea they are referring to “obvious” etc. So do not worry if something that someone says is “obvious” is 
not so obvious to you! See also footnote 76.  
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MM6.3.  

Applications of differentiation to gradients, tangents, normals, stationary points 
(maxima and minima only), strictly increasing functions [ if 𝑓𝑓′(𝑥𝑥) > 0 ] and strictly 
decreasing functions [ if 𝑓𝑓′(𝑥𝑥) < 0 ]. Points of inflexion will not be examined, 
although a qualitative understanding of points of inflexion in the curves of simple 
polynomial functions is expected. 

 

On of the motivations behind this section of the specification is to equip you with 
enough basic calculus techniques to help you sketch curves given an equation. As 
you read through this section and as you think about the ideas we meet, make sure 
you think about how the ideas relate to the shapes of curves. You ought to have a 
good idea of the general shape of quadratic curves, cubics, quartics, and quintics and 
some idea how to generalise those shapes to polynomial with higher powers of 𝑥𝑥 [see 
later – the graph sketching section of these notes]. 

We expect you to be able to use differentiation to find the gradients of tangents at a 
given point and find equations of both the tangents and the normal to a curve at a 
given point. All of these should be topics you have covered extensively during your 
studies. In these notes, we will assume you know how to deal with these.  

You should also be able to identify stationary points [sometime these are called local 
maxima or local minima as they are not necessarily the very least or the very greatest 
value of the function in question] and classify them [i.e., tell if they are maxima or 
minima using calculus or some other methods]. 

We also expect you to have a general understanding of what a [horizontal] point of 
inflexion60 is and some idea about when they might occur when dealing with simple 
polynomial functions [polynomial functions are just sums of integer powers of 𝑥𝑥 – such 
as quadratics, cubics, quartics etc.].  

Let’s start by looking at stationary points and how we can use the second derivative 
to help tell if they are local maxima or local minima. Stationary points occur when the 
tangent to a curve is horizontal. And if the tangent is horizontal then the gradient of 
the tangent must be zero. And we know that the gradient of the tangent is given by d𝑦𝑦

d𝑥𝑥
 .  

So stationary points occur at the 𝑥𝑥-values that make 

d𝑦𝑦
d𝑥𝑥

= 0  

But how do you know if the stationary point you have identified is a maximum, a 
minimum [or a point of inflexion]?  There are a number of techniques you can use to 
tell: 

 
60 This is often written as “inflection”. 
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• You can sometimes tell by knowing the general shape of the curve you are 
sketching. For instance, if you are sketching the cubic 𝑦𝑦 = 2𝑥𝑥3 − 3𝑥𝑥2 − 12𝑥𝑥 +
6, you can differentiate to find the 𝑥𝑥 coordinates of the stationary points [if there 
are any61]:   

d𝑦𝑦
d𝑥𝑥

= 6𝑥𝑥2 − 6𝑥𝑥 − 12 = 0 = 6(𝑥𝑥2 − 𝑥𝑥 − 2) = 6(𝑥𝑥 − 2)(𝑥𝑥 + 1) 

 And so stationary points occur at 𝑥𝑥 = 2 and  𝑥𝑥 = −1.  

This cubic has a positive coefficient for the 𝑥𝑥3  term, so it has its maximum to 
the left of its minimum. This tells us that the maximum has 𝑥𝑥 coordinate of −1 
and the minimum has an 𝑥𝑥 coordinate of 2. 

• You can look at the 𝑦𝑦 values either side of the 𝑥𝑥 value you have identified for 
the stationary point. This tends to be a less efficient method but can be useful. 
Generally, other methods are better than this and when using this method, you 
need to be careful not to take 𝑥𝑥 values too far away from the stationary point’s 
𝑥𝑥 value in case you cross over other stationary points.  
In the example above, we found stationary points at 𝑥𝑥 = 2 and  𝑥𝑥 = −1.  If you 
calculate the 𝑦𝑦 values at 𝑥𝑥 = 2 and at 𝑥𝑥 = 2.1 and 1.9 you will find the 𝑦𝑦 values 
either side of 𝑥𝑥 = 2  are larger than the 𝑦𝑦 value at 𝑥𝑥 = 2 . This suggest the 
stationary point at 𝑥𝑥 = 2 is a minimum.  
 

• You can look at the value of the second derivate at the stationary point. If the 
second derivative at the stationary point is positive, then it is a minimum; and if 
the second derivative is negative, then the stationary point is a maximum. 
Check the values for our example 𝑦𝑦 = 2𝑥𝑥3 − 3𝑥𝑥2 − 12𝑥𝑥 + 6 at 𝑥𝑥 = 2 and  𝑥𝑥 =
−1. 
 
 But why is this?  
 
The second derivative of a function can tell you how the first derivative is 
changing – usually whether the derivative is increasing or decreasing. If as 𝑥𝑥 
increases the first derivative goes from negative to positive [see the diagram 
below] we have a minimum ; and so, the derivative is usually62 increasing at a 

minimum. Hence, we know that if  d
2𝑦𝑦
d𝑥𝑥2

> 0  at the stationary point – and recall 
the second derivative tells you how the first derivative is behaving - then there 
is a minimum.  

 
61 Some cubic graphs have no stationary points, and some have only a point of inflexion. Make sure you can 
sketch such curves. Can you work out the equation of a cubic with no stationary points [hint – start with a 
quadratic with no roots and integrate]  
62We are being cautious as the derivative at a minimum could also give  d

2𝑦𝑦
d𝑥𝑥2

= 0  in some cases. See our 
discussion below 
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If as 𝑥𝑥 increases the derivate goes from positive to negative [see the diagram 
below] we have a maximum; and so, the derivative is usually decreasing at a 

maximum. Hence, we know that if  d
2𝑦𝑦
d𝑥𝑥2

< 0  at the stationary point, then there is 
a  maximum.  
 

                             

 

In the last bullet point above we were a little cautious in how we worded things. This 
is because we need to be careful about the logic of what we have said: 

 

• If d𝑦𝑦
d𝑥𝑥

= 0  and d
2𝑦𝑦
d𝑥𝑥2

> 0  then we have a minimum 

 

• If d𝑦𝑦
d𝑥𝑥

= 0  and d
2𝑦𝑦
d𝑥𝑥2

< 0  then we have a maximum 
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And so 

• the condition d𝑦𝑦
d𝑥𝑥

= 0  and d
2𝑦𝑦
d𝑥𝑥2

> 0  is sufficient but not necessary 63  for a 
minimum. 
 

• the condition d𝑦𝑦
d𝑥𝑥

= 0  and d
2𝑦𝑦
d𝑥𝑥2

< 0  is sufficient but not necessary 64  for a 
maximum. 

 

Why is the condition only a sufficient condition and not a necessary one ? The 
answer is that: 

 

• d𝑦𝑦
d𝑥𝑥

= 0  and  d
2𝑦𝑦
d𝑥𝑥2

= 0  could occur at a minimum  [e.g. at 𝑦𝑦 = 𝑥𝑥4]  

 

• d𝑦𝑦
d𝑥𝑥

= 0  and  d
2𝑦𝑦
d𝑥𝑥2

= 0  could occur at a maximum  [e.g. at 𝑦𝑦 = −𝑥𝑥4] 

 

In other words: 

• at a minimum we have d𝑦𝑦
d𝑥𝑥

= 0  and we could have either d
2𝑦𝑦
d𝑥𝑥2

> 0  or d
2𝑦𝑦
d𝑥𝑥2

= 0  but 

not d
2𝑦𝑦
d𝑥𝑥2

< 0   

 

• at a maximum we have d𝑦𝑦
d𝑥𝑥

= 0  and we could have either d
2𝑦𝑦
d𝑥𝑥2

< 0  or d
2𝑦𝑦
d𝑥𝑥2

= 0  but 

not d
2𝑦𝑦
d𝑥𝑥2

> 0   

 

  

 
63 See our Notes on Logic and Proof for a discussion of necessary and of sufficient  
64 See our Notes on Logic and Proof for a discussion of necessary and of sufficient  
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MM6.3. 

Applications of differentiation to gradients, tangents, normals, stationary points 
(maxima and minima only), strictly increasing functions [if 𝑓𝑓′(𝑥𝑥) > 0 ] and strictly 
decreasing functions [if 𝑓𝑓′(𝑥𝑥) < 0]. Points of inflexion will not be examined, although a 
qualitative understanding of points of inflexion in the curves of simple polynomial 
functions is expected. 

 

 

Now we can turn to look at strictly increasing and strictly decreasing functions in 
relation to differentiation.65 We will not explore the other topics mentioned in MM6.3 
as they are standard topics that we expect you to have fully covered in your 
mathematics course.  

First, note that here the specification has been slightly changed when compared to 
previous TMUA specifications: strictly increasing and strictly decreasing has replaced 
increasing and decreasing.  

Let’s start by developing an intuitive grasp for what a strictly increasing function is. In 
simple terms, a strictly increasing function is one that is always getting greater [the 𝑦𝑦 
value gets greater] as the 𝑥𝑥 value gets greater. We could also say that it always slopes 
upwards. We have drawn some strictly increasing functions below.   

  

 

The same idea applies to strictly decreasing  functions: they always get less [the 𝑦𝑦 
value gets less] as the 𝑥𝑥 value gets greater. We could also say that it always slopes 
downwards. We have drawn some strictly decreasing functions below:   

 
65 We have used a slightly narrow definition of strictly increasing and decreasing in the TMUA/ESAT as we 
wanted to relate the topic to differentiation without adding too many additional ideas to grasp. There are 
other definitions that take into account some of the subtle issues we  discuss in this section – for instance,  
other definitions do not have to worry about functions with corners etc  
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There are a few things to note in what we have said so far. First notice that we used 
the terms “greater” and “less” rather than “bigger” and “smaller”. We did this because 
there can be some confusion if the 𝑦𝑦-values are negative: it might not be clear that −3 
is “bigger” than −5 , but it is true that −3 is greater than −5.  Secondly, notice that 
some of the pictures in our examples deliberately have corners in them. We put these 
in to show that a function can increase but there might be place on the function where 
we cannot find the value of 𝑓𝑓’(𝑥𝑥) – you cannot find the value for 𝑓𝑓’(𝑥𝑥) on a corner as 
a corner does not have  a unique tangent.  Both these points are important for when 
we come to the definition and the logic we use in the TMUA/ESAT in relation to strictly 
increasing and strictly decreasing functions.  

The way we have set out our definition does not capture all cases of strictly 
increasing/decreasing functions. You should pay careful attention to what the 
specification says:  

 

if 𝑓𝑓′(𝑥𝑥) > 0  then the function is strictly increasing  

if 𝑓𝑓′(𝑥𝑥) < 0  then the function is strictly decreasing 

 

So, we have given a sufficiency condition for strictly increasing/decreasing but not a 
necessary one [there are necessary conditions that we could give but we are 
interested in the TMUA/ESAT at getting a feel for the shape of functions using 
differentiation so we have restricted what we have expected of you]  

Notice that we CANNOT say: 

If a function is strictly increasing, then 𝑓𝑓′(𝑥𝑥) > 0  for all 𝑥𝑥 

If a function is strictly decreasing, then 𝑓𝑓′(𝑥𝑥) < 0  for all 𝑥𝑥 
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It should be clear we cannot say this – look at the examples we drew above and work 
our why these two statements are not true.66 

There is a little bit more we can say about strictly increasing and strictly decreasing 
functions:  notice we have not yet said what 𝑥𝑥 values the conditions apply to. Usually 
we apply the definition to the whole domain of the function [the domain is all the 𝑥𝑥 
values the function is defined on – usually this will be all real 𝑥𝑥 values, that is the whole 
𝑥𝑥-axis,  unless otherwise stated, or unless the function  is only defined on a subset of 
the real numbers, e.g. log functions]. We could look at restricted set of  𝑥𝑥 values in an 
obvious manner:   

if 𝑓𝑓′(𝑥𝑥) > 0  in 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏 then the function is strictly increasing in 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏  

if 𝑓𝑓′(𝑥𝑥) < 0  in 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏 then the function is strictly decreasing in 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏  

 

 

A final note 

In TMUA/ESAT, we will not test you on special cases and subtle technicalities for this 
topic. We do expect you to understand what is means for a nice graph [continuous – 
i.e. no breaks in the graph; with no sharp corners] to be strictly increasing or strictly 
decreasing and we will base our questions around simple functions such as 
polynomials which we know are well behaved. You won’t need to worry about issues 
such as if the functions we use have corners and that sort of thing, but you do need to 
make sure you understand the logic of the definition we have decided to use.  

 

Inflexions  

For inflexions, we expect you to know what they are in general terms and where they 
might occur [e.g., in 𝑦𝑦 = 𝑥𝑥3] so that you can take account of their possibility when 
thinking about polynomials and their graphs. We do not expect you to have a detailed 
knowledge of how to identify a point of inflexion using differentiation and we will not 
ask questions that specifically involve technical issues directly related to points of 
inflexion.   

 

  

 
66 Think about what happens to 𝑓𝑓′(𝑥𝑥) when graphs have “corners on them”.   
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Integration 
Before we start to look at the specification for this section, we have a few introductory 
remarks to make.  

First, there are two ways to think about integration. These two ways are closely related 
but how they relate is not something we expect you to know for the TMUA/ESAT.  

Either you can think of integration as the reverse of differentiation – it tells you what 
must have been differentiated to get the expression you are integrating.  

Or, you can think of integration as finding the “area” between a curve and the 𝑥𝑥-axis;  
but we have to be very careful by what we mean by “area” and that is something we 
shall discuss carefully below. 

When integration is written as the reverse of differentiation it tends to look like this:67 

�𝑥𝑥2  d𝑥𝑥  

The expression being integrated appears between the ∫  and the d𝑥𝑥 and in this case 
the expression is asking “what must be differentiated to get 𝑥𝑥2 ?”  and the answer is 

𝑥𝑥3

3
+ 𝑐𝑐 

 

And note we add a constant term “𝑐𝑐” – you should be able to explain why we do this. 
[recall that when you differentiate a constant, you get 0] 

When integration is asking you to find “areas” then we tend to have numbers written 
at the top and bottom of the ∫ . In these cases, it is called “definite integration”, and 
the numbers are called “limits”.  We will unpack some aspects of definite integration 
below. Here is an example of a definite integral: 

� 𝑥𝑥2
3

1
 d𝑥𝑥 

  

 
67 Sometimes [but not really until some university course on mathematics] integration can be written as 
∫ d𝑥𝑥  𝑥𝑥2.  This ∫  is actually an elongated “s” meaning “sum” – it behaves similarly to Σ.  The notation we use 
for calculus is largely derived from Leibnitz – look up “Leibnitz notation”.  
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MM7.1.  

Definite integration as related to the ‘area between a curve and an axis’. The 
difference between finding a definite integral and finding the area between a curve 
and an axis is expected to be understood. 

 

 

In this section, we will assume you know how to integrate and deal with limits in an 
integral!  

 

When we talk about areas and integration, we need to be very careful. The term “area” 
is usually taken to be a positive value and that can lead to some confusion when we 
talk about definite integration and the area between a curve and an axis. Definite 
integration is almost a sum of areas but instead it subtracts “areas” that are underneath 
the 𝑥𝑥-axis. So, a definite integral calculates all the areas that sit above the 𝑥𝑥-axis and 
sums them up and then subtracts all the areas that sit below the 𝑥𝑥 axis; and it does 
this whole calculation in one go.  

 

As an aside: There is a good reason for this – we do not expect you to know the details 
for TMUA/ESAT but you might have met some diagrams in class where integration is 
presented as sums of very thin rectangle between the curve and the 𝑥𝑥-axis. The 
contribution of each of these rectangles to the integral is the 𝑦𝑦 value of the rectangle 
height [and the 𝑦𝑦 value can be positive or negative] times the teeny width along the 𝑥𝑥-
axis [the d𝑥𝑥 bit, which is always taken to be positive]. As rectangles that sit under the 
𝑥𝑥-axis have negative 𝑦𝑦 values, their contributions to the integral are negative – and 
hence the negative “areas” for those bits of the integral 
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Let’s look at a few examples to help us understand how this works: 

Example 1 

Calculate   ∫ 𝑥𝑥2 d𝑥𝑥3
0  and draw a picture to illustrate the meaning of the answer  

� 𝑥𝑥2 d𝑥𝑥
3

0
=  �

𝑥𝑥3

3
�
0

3

=
27
3
−  

0
3

= 9 

 

                               

 

Example 2  

Calculate ∫ 𝑥𝑥3 0
−3 d𝑥𝑥   and draw a picture to illustrate the meaning of the answer 

∫ 𝑥𝑥3 0
−3 d𝑥𝑥 =  �𝑥𝑥

4

4
�
−3

0
= 0

4
−  (−3)4

4
= −81

4
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Example 3 

Calculate ∫ 𝑥𝑥5 3
−3 d𝑥𝑥   and draw a picture to illustrate the meaning of the answer. 

� 𝑥𝑥5 
3

−3
d𝑥𝑥 =  �

𝑥𝑥6

6
�
−3

3

=
36

6
−  

(−3)6

6
= 0 

  

 

                                       

 

Can you work out why the answer is zero? 

 

We mentioned above that there can be a subtle difference between being asked to 
find the area between a curve and an axis and finding a definite integral. We will 
explore this in a more detail.  

We have already discussed that a definite integral can be interpreted as the sum of 
the areas above the 𝑥𝑥-axis minus the sum of the areas below the 𝑥𝑥-axis. So, if you are 
asked to find the area between a curve and the 𝑥𝑥-axis between two 𝑥𝑥 values, the 
definite integral might give you the wrong answer. The answer will be wrong because 
to find the total area between a curve and the 𝑥𝑥 axis when you are given two 𝑥𝑥 values, 
you must find the areas that sit above the 𝑥𝑥 axis and ADD them to the positive areas 
that sit below the 𝑥𝑥-axis; and we know that definite integration will subtract areas that 
sit underneath the 𝑥𝑥 -axis. How can we calculate the area required?  The simple 
answer is that we calculate each area separately – the areas above the 𝑥𝑥-axis and the 
areas below the 𝑥𝑥-axis – using the definite integral. And then we take the positive 
values of all these areas and add them together.  Here is an example to illustrate what 
we mean here : 
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Example  

Find the area between the 𝑥𝑥-axis, the lines 𝑥𝑥 = 0 and 𝑥𝑥 = 2  the curve 𝑦𝑦 = 𝑥𝑥2 − 1 

Let’s start by sketching the area so we can understand what we are being asked to 
do: 

                                     

From the diagram you can see that we need to split our calculations into two pieces 
because we want positive areas – the question asks for areas rather than just asking 
for an integral. We need to find ∫ 𝑥𝑥2 − 1 d𝑥𝑥1

0   and  ∫ 𝑥𝑥2 − 1 d𝑥𝑥2
1 . We expect the first 

integral to be negative and the second to be positive.  Let’s calculate the two integrals 
and then we can see how to combine them to get the answer: 

� 𝑥𝑥2 − 1 d𝑥𝑥
1

0
= �

𝑥𝑥3

3
− 𝑥𝑥�

0

1

=  
1
3
− 1 =  −

2
3

  

 

� 𝑥𝑥2 − 1 d𝑥𝑥
2

1
  �
𝑥𝑥3

3
− 𝑥𝑥�

1

2

=   �
23

3
− 2� − �

13

3
− 1� =

4
3
 

 

We note that the definite integral for A is negative as expected and the definite integral 
for B is positive.  This tells us that area A is 2

3
  and area B is 4

3
 so the total area required 

is 6
3

= 2  

 

It is useful to contrast this answer with the definite integral from 𝑥𝑥 = 0 to 𝑥𝑥 = 2.  You 
should calculate this to see what you get – your answer should be 2

3
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Integration with 𝐝𝐝𝒚𝒚 

Although there is no requirement for you to deal with integrals with d𝑦𝑦 in them, it is 
useful to know about them all the same: for instance,  ∫  𝑦𝑦3  d𝑦𝑦 3

−2 . We call these 
integrals with respect to [w.r.t68] 𝑦𝑦 and we need to make sure that what is being 
integrated is expressed in terms of y. 

These integrals are calculated exactly the same way as those with 𝑥𝑥 in them:  

�  𝑦𝑦3  d𝑦𝑦 
3

−2
= �

𝑦𝑦4

4 �−2

3

=
34

4
−

(−2)4

4
 

And we can draw a picture to illustrate the region that this integral applies to [note the 
integral corresponding to A is negative, and to B is positive] : 

 

                          

Integration “tricks” 

Finally, there are few “tricks” you should be aware of that can sometimes make 
integration easier. The ones we will look at here [albeit briefly] are ones that involve 
using the symmetry or asymmetry of graphs to simplify definite integrals. 

If a graph of a function 𝑦𝑦 =  𝑓𝑓(𝑥𝑥)  is symmetric about the 𝑦𝑦 axis [when the graph is 
reflected in the 𝑦𝑦 axis it looks the same] the following must be true: 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 = � 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑎𝑎

𝑏𝑏
 

−𝑏𝑏

−𝑎𝑎
 

 

 
68 “wrt” is  a very common abbreviations in mathematics.  
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And we can see why using a diagram: 

 

                                        

 

If a graph of a function 𝑦𝑦 =  𝑓𝑓(𝑥𝑥)  is antisymmetric [when the graph is reflected in the 
𝑦𝑦 axis and then in the 𝑥𝑥-axis, it looks the same] the following must be true: 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 = −� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑏𝑏

𝑎𝑎
 

−𝑎𝑎

−𝑏𝑏
 

And we can see why using a diagram: 

                             

 

 

 

124



 
 

Exercise 

Using these symmetry ideas and your knowledge of integration, you should be able to 
explain why69 the following are true:  

� cos 𝑥𝑥 d𝑥𝑥 =  0
2𝜋𝜋

0
 

 

� sin 𝑥𝑥 d𝑥𝑥 =  0
2𝜋𝜋

0
 

 

� sin 𝑥𝑥 d𝑥𝑥 =  0
𝜋𝜋

−𝜋𝜋
 

 

� tan 𝑥𝑥 d𝑥𝑥 =  0
𝜋𝜋

−𝜋𝜋
 

 

� 𝑥𝑥3  d𝑥𝑥 =  0
10

−10
 

 

� 𝑥𝑥2  d𝑥𝑥 =  2� 𝑥𝑥2
𝜋𝜋

0
d𝑥𝑥

𝜋𝜋

−𝜋𝜋
 

 

� sin 𝑥𝑥 d𝑥𝑥 =  −� sin 𝑥𝑥
2𝜋𝜋

𝜋𝜋
d𝑥𝑥

𝜋𝜋

0
 

 

  

 
69 Although trigonometric integration [and differentiation] is not on the TMUA/ESAT specification, all these 
examples are expression we could expect you to deduce within the TMUA/ESAT specification.  
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MM7.2.  
Finding definite and indefinite integrals of 𝑥𝑥𝑛𝑛 for n rational, 𝑛𝑛 ≠ 1, and related sums 
and differences, including expressions which require simplification prior to 
integrating. 

For example: ∫(𝑥𝑥 + 2)2d𝑥𝑥 , and  ∫ (3𝑥𝑥−5)2

𝑥𝑥
1
2

dx  

 

In the TMUA/ESAT we expect you to be able to integrate sums of terms in powers of 
𝑥𝑥 using the rule : 

�𝑘𝑘𝑥𝑥𝑛𝑛  d𝑥𝑥 =  
𝑘𝑘𝑥𝑥𝑛𝑛+1 
𝑛𝑛 + 1

+ 𝑐𝑐        𝑛𝑛 ≠ −1  

 

Where 𝑘𝑘 and 𝑐𝑐 are a real constant and 𝑛𝑛 is any real number except −1 . When 𝑛𝑛 =
−1 the answer falls outside the scope of TMUA/ESAT.70 

Any integration that you are required to do in the TMUA/ESAT, if it does not require 
symmetry or other arguments, will be an integration of sums of powers of 𝑥𝑥. We will 
not ask question that require more sophisticated methods such as substitution or 
integration by parts etc., and we are careful to make sure every question we might ask 
involving integration can be answered equally efficiently using the basic methods 
outlined here, even if it turns out more advanced methods could also be applied.71  

In the TMUA/ESAT the expression you are given might not look like powers of 𝑥𝑥 but it 
will be possible to simplify it into such a sum. Here is an example:    

�(𝑥𝑥 − 2)2 d𝑥𝑥 =  �𝑥𝑥2 − 4𝑥𝑥 + 4 d𝑥𝑥 =  �𝑥𝑥2 d𝑥𝑥 − �4𝑥𝑥 d𝑥𝑥 + � 4 d𝑥𝑥 

=
𝑥𝑥3

3
−

4𝑥𝑥2

2
+ 4𝑥𝑥 + 𝑐𝑐 

Here it is useful to notice something about integration that is often taken for granted 
without much thought: when you integrate a simple sum, you can integrate term by 
term and add [or subtract] the individual answers. It is always worth thinking very 
carefully about the properties of the mathematics you meet to ensure you do not 
inadvertently perform mathematical moves that might seem right but which are, in fact, 
invalid.72  

 
70 You might have seen: ∫ 1

𝑥𝑥
d𝑥𝑥 ln|𝑥𝑥| + 𝑐𝑐 . Note that  ln|𝑥𝑥| is the natural logarithm of 𝑥𝑥 and this topic is NOT on 

the TMUA/ESAT.  
71 We are careful in the TMUA/ESAT to ensure that knowing more advanced techniques does not give anyone 
undue advantage.  
72 For instance, it might be tempting to write 𝑓𝑓(𝑥𝑥 + 3) = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(3)  or 𝑓𝑓(𝑥𝑥2) = [𝑓𝑓(𝑥𝑥)]2  but these are not 
generally true. Or you might be tempted to do this [which is very wrong, so don’t do it]: ∫ 𝑓𝑓(𝑥𝑥)

𝑔𝑔(𝑥𝑥)
d𝑥𝑥 =  ∫𝑓𝑓(𝑥𝑥)d𝑥𝑥

∫𝑔𝑔(𝑥𝑥) d𝑥𝑥
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MM7.3.  
An understanding of the Fundamental Theorem of Calculus and its significance to 
integration. 
Simple examples of its use may be required in the forms: 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) , where  𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 

𝑑𝑑
𝑑𝑑𝑥𝑥 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥

𝑎𝑎 = 𝑓𝑓(𝑥𝑥)   

 

 

You already know both expressions in this section, although you might not realise you 
know them. We will explore each expression in turn: 

First: 

∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎),𝑏𝑏
𝑎𝑎  where 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 

 

This links the idea that integration is the reverse of differentiation and the method you 
are familiar with for calculating definite integrals. 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) tells you that when you 
integrate 𝑓𝑓(𝑥𝑥) you get 𝐹𝐹(𝑥𝑥); and∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) 𝑏𝑏

𝑎𝑎  tells you how to put limits 
into the expression you get once you have integrated.  

A useful consequence of this expression is the following – essentially if you swap the 
limits around you introduce  a minus sign into the integral: 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 =  −� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑎𝑎

𝑏𝑏
    

𝑏𝑏

𝑎𝑎
 

You should check you can see why this works. 

And the Fundamental Theorem also allows you to write integrals in other ways: 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 =   
𝑏𝑏

𝑎𝑎
� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 +  
𝑐𝑐

𝑎𝑎
� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑏𝑏

𝑐𝑐
 

It is tempting to add the condition 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 , that is that 𝑐𝑐 must be between 𝑎𝑎 and 𝑏𝑏; 
but we have not added that condition. Can you work out why not ? You do have to be 
a bit careful though: for instance, it might be the case that 𝑓𝑓(𝑥𝑥) is not defined at 𝑐𝑐 or 
at some other interval [i.e. part of the 𝑥𝑥 axis] that you might have wanted to integrate 
over by introducing 𝑐𝑐. 
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The second expression in the specification  𝑑𝑑
𝑑𝑑𝑥𝑥 ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑥𝑥)𝑥𝑥

𝑎𝑎   suggest that if you 
integrate and then differentiate, you should get back to what you started with [note we 
had to put an 𝑥𝑥 in the limits because if we had just put two numbers as limits, then the 
integral would be constant and then the differentiation would give 0]. You need to be 
a little careful with this expression though, as it is not as simple as it first appears. 
Have a look at TMUA 2020 paper 2 question 16. 
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MM7.4.  
Combining integrals with either equal or contiguous ranges. 
For example: 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥5
2 + ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥5

2 = ∫ [𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)]𝑑𝑑𝑥𝑥5
2   

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥4
2 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥3

4 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥3
2   

 

This section is really just a reiteration of what we have said earlier in these notes: 

• You can integrate term by term or all at once in an integral: 

� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 + � 𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 =  � [𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)]
5

2

5 

2

5

2
𝑑𝑑𝑥𝑥 

 

• You can use the Fundamental Theorem of Calculus to simplify expressions: 
 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 + � 𝑓𝑓(𝑥𝑥) d𝑥𝑥 = � 𝑓𝑓(𝑥𝑥) d𝑥𝑥
3

2

3

4

4

2
 

It is worth checking that you have an intuitive grasp of both of these and also that you 
have a formal understand of why they work. 

We will use the Fundamental Theorem of Calculus to unpack the second statement: 

 

� 𝑓𝑓(𝑥𝑥) d𝑥𝑥 + � 𝑓𝑓(𝑥𝑥) d𝑥𝑥 =  � 𝑓𝑓(𝑥𝑥) d𝑥𝑥  + 
3

2

3

4

4

2
� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
4

3
  −� 𝑓𝑓(𝑥𝑥) d𝑥𝑥

4

3
 

=    � 𝑓𝑓(𝑥𝑥) d𝑥𝑥
3

2
 

Check you can see what we have done in the middle section. 
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MM7.5.  

Approximation of the area under a curve using the trapezium rule; determination of 
whether this constitutes an overestimate or an underestimate.  
 

 

We expect you to be able to use the Trapezium rule to estimate areas under curves 
[and recall we take area to be positive] or to estimate the values of definite integrals 
[remember definite integrals take “areas” under the 𝑥𝑥-axis as negative]. We will make 
sure that any question we ask in the TMUA/ESAT is very clear about whether it is 
asking for an estimate of areas between a curve and an axis or whether it is asking for 
an estimate of a definite integral. 

You should either learn the Trapezium rule formula [but make sure you understand it] 
or you should be able to calculate the result from scratch using your knowledge of the 
area of a trapezium. We ALWAYS assume that the trapezium rule finds an estimate 
of an area using equal width strips. 

Let’s briefly look at the Trapezium rule and how it works: 

The area of a trapezium with two right angles in it – as shown - is  

𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 = ℎ ×
𝑎𝑎 + 𝑏𝑏

2
  =

ℎ
2

(𝑎𝑎 + 𝑏𝑏) 

 

                                             

Using this formula, we can see how we could estimate the area under a curve using a 
set of equal width trapezia. We will use 𝑛𝑛 trapezia each of width ℎ and the heights of 
each trapezium can be calculated from the function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) whose area we are 
approximating: 
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𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑜𝑜𝑥𝑥𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑛𝑛 𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 =
ℎ
2

(𝑦𝑦0 + 𝑦𝑦1) +
ℎ
2

(𝑦𝑦1 + 𝑦𝑦2) +
ℎ
2

(𝑦𝑦2 + 𝑦𝑦3) + ⋯+
ℎ
2

(𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛)  

 

 And this simplifies to  

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑜𝑜𝑥𝑥𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑛𝑛 𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎 =
ℎ
2

(𝑦𝑦0 + 2𝑦𝑦1 + 2𝑦𝑦2 + 2𝑦𝑦3 … + 2𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛) 

And this is one form of the Trapezium rule. Notice that every 𝑦𝑦𝑘𝑘 appears twice except 
the first one 𝑦𝑦0 and the last one 𝑦𝑦𝑛𝑛 ; this is not surprising as every 𝑦𝑦𝑘𝑘 [except 𝑦𝑦0 and 𝑦𝑦𝑛𝑛] 
is the shared side for two trapezia. 

We will not ask you questions that involve complicated calculations as we are 
interested in checking your understanding of mathematics in the TMUA/ESAT rather 
than your ability to add lots of numbers together correctly!  

You should be able to tell whether the result of the trapezium rule is an overestimate 
or an underestimate using your understanding of the shapes of curves [some of which 
we meet in the next section].  
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Sometimes, it is not possible to tell if the trapezium rule gives an overestimate or 
underestimate without further work : 

 

                                               

  

132



 
 

MM7.6.  

Solving differential equations of the form  𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑓𝑓(𝑥𝑥)  

 

 

Solving the expression 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑓𝑓(𝑥𝑥) is really asking you to find what 𝑦𝑦 is, expressed in 
terms of 𝑥𝑥, such that when you differentiate 𝑦𝑦 you get 𝑓𝑓(𝑥𝑥). This is a bit of a mouthful. 
Another way of saying this is: what do you differentiate to get 𝑓𝑓(𝑥𝑥)? 

We will look at a couple of examples, firstly without any additional conditions and then 
with additional conditions [you will see what we mean by additional conditions below]: 

 

Example 

Solve    d𝑦𝑦
d𝑥𝑥

= 3𝑥𝑥2 + 4𝑥𝑥 − 3 

To find 𝑦𝑦 we integrate both sides with respect to [wrt] 𝑥𝑥: 

When we integrate d𝑦𝑦
d𝑥𝑥

 wrt 𝑥𝑥 we get 𝑦𝑦 [see Fundamental Theorem of Calculus above] 

And when we integrate 3𝑥𝑥2 + 4𝑥𝑥 − 3  wrt 𝑥𝑥 we get 𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥 + 𝑐𝑐 

So, the solution is 

𝑦𝑦 = 𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥 + 𝑐𝑐 

 

A few things to note in this example: 

When integrating d𝑦𝑦
d𝑥𝑥

  we found ∫ d𝑦𝑦
d𝑥𝑥

 d𝑥𝑥 and we used the Fundamental Theorem of 
Calculus which tells us that integration and differentiation are linked. So, if we 
differentiate 𝑦𝑦 and then integrate it we should get just 𝑦𝑦 back. Well actually, we should 
write 𝑦𝑦 + 𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 but we don’t as we tend to assume all the constants generated from 
integration are combined on the 𝑥𝑥 side of the solution and written as “𝑐𝑐” 
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We can now look at an example with some additional condition attached to it: 

Example 

Given 𝑦𝑦 = 5 when 𝑥𝑥 =  1 and    d𝑦𝑦
d𝑥𝑥

= 3𝑥𝑥2 + 4𝑥𝑥 − 3, find 𝑦𝑦 in terms of 𝑥𝑥  

[Numerical values such as 𝑦𝑦 = 5  when 𝑥𝑥 =  1 are sometimes called “boundary 
conditions” or “initial conditions” depending on the circumstances and values given. 
We won’t use these terms in the TMUA/ESAT.]  

We can solve this two [entirely equivalent] ways.  

Method 1 

We can work out the answer as we did above with a constant term 𝑐𝑐 in it and then use 
the condition 𝑦𝑦 = 5 when 𝑥𝑥 =  1 to find the value of 𝑐𝑐 by substitution: 

𝑦𝑦 = 𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥 + 𝑐𝑐 

So 𝑦𝑦 = 5 when 𝑥𝑥 =  1 gives 

 

5 = 1 + 2 − 3 + 𝑐𝑐 

So 𝑐𝑐 = 5 

And the solution is  
𝑦𝑦 = 𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥 + 5 

Method 2 

We notice that 𝑦𝑦 = 5 when 𝑥𝑥 =  1 and 𝑦𝑦 is 𝑦𝑦 when 𝑥𝑥 is 𝑥𝑥, and so we put these values 
directly as corresponding limits [top limits go together, and bottom limits go together] 
in the integration: 

 

�
d𝑦𝑦
d𝑥𝑥

  d𝑥𝑥 =  � 3𝑥𝑥2 + 4𝑥𝑥 − 3  d𝑥𝑥
𝑥𝑥=𝑥𝑥

𝑥𝑥=1

𝑦𝑦=𝑦𝑦

𝑦𝑦=5
 

   

Don’t worry too much about the expression on the left73 [but do think a little about what 
it means]. This leads to: 

 
73 We have been a little slapdash with our notation on the left-hand side. As we are integrating wrt 𝑥𝑥 then the 
limits ought to be 𝑥𝑥 values and not the corresponding 𝑦𝑦 values but it is easier just to put the 𝑦𝑦 values in as 
those are the ones we will end up using when we have integrated. 
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[𝑦𝑦]5
𝑦𝑦 = [𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥]1𝑥𝑥 

Which gives: 

𝑦𝑦 − 5 = (𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥) − (1 + 2 − 3) 

Which gives, as above: 

𝑦𝑦 = 𝑥𝑥3 + 2𝑥𝑥2 − 3𝑥𝑥 + 5 
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MM8 Graphs of Functions 
Much of this section has been covered earlier in these notes. And so, we will 
concentrate mainly on the parts of the specification that have not been covered in 
detail elsewhere and add a few additional comments when useful. 

MM8.1    

Recognise and be able to sketch the graphs of common functions that appear in this 
specification: these include lines, quadratics, cubics, trigonometric functions, 
logarithmic functions, exponential functions, square roots, and the modulus function. 

 

You should be able to sketch any of the following given the corresponding equation: 
lines, quadratics, cubics, trigonometric functions, logarithmic functions, exponential 
functions, and square roots.  

We do expect you to have a good understanding of the possible shapes of quadratics, 
cubics and also graphs of higher powers of 𝑥𝑥  such as quartics and quintics. We 
recommend you spend some time experimenting with different equations of such 
polynomials using a good graph drawing package [e.g., DESMOS GRAPHING]. When 
drawing cubics, quartics and quintics, pay attention to the sorts of shapes you get and 
think about the range of the possible shapes for such graphs and what happens when 
the highest power of 𝑥𝑥 [the  𝑥𝑥2  term in a quadratic, the 𝑥𝑥3 term in a cubic, the 𝑥𝑥4 term 
in a quartic, etc ] has a positive coefficient and when it has a negative coefficient. We 
have drawn a few examples below to help you get an idea of the sorts of shapes to 
expect [but, be aware that not all possible shapes are shown!!]:  
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We will now explore the modulus function. We met this earlier in these notes. There 
we said that the modulus function effectively makes values positive. It is written as two 
vertical lines, one either side of what it applies to and it can be thought of as saying 
“take the positive value of this …”.  

In the TMUA/ESAT we expect you to be able to deal with simple modulus functions 
both algebraically [which we covered earlier] and also graphically. In this section, we 
will explore the graphical aspects of modulus functions. 

We will start with a couple of examples and then we will summarise how to go about 
sketching graphs involving the modulus function.74 

 

 
74 You should also experiment with graphs and using the modules function yourself using a graphical drawing 
package such as DESMOS GRAPHING  
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Example 

Here are sketches of 𝑦𝑦 = (𝑥𝑥 + 1)(𝑥𝑥 − 2)   and then 𝑦𝑦 = |(𝑥𝑥 + 1)(𝑥𝑥 − 2)|    

       

  

 

Example 

Here are sketches of 𝑦𝑦 = 𝑥𝑥 − 2  and  𝑦𝑦 = |𝑥𝑥 − 2| 

            

 

In simple terms, if you need to sketch 𝑦𝑦 = |𝑓𝑓(𝑥𝑥)| for some 𝑓𝑓(𝑥𝑥) then you first sketch 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and then reflect everything that sits below the 𝑥𝑥-axis to be above the 𝑥𝑥-axis 
and leave everything that sits above the 𝑥𝑥-axis where it is unchanged. The result is a 
sketch of the graph of  𝑦𝑦 = |𝑓𝑓(𝑥𝑥)| This makes sense because the modulus function 
tells you to take the positive value of something. When 𝑓𝑓(𝑥𝑥) is positive then nothing 
needs altering, but when 𝑓𝑓(𝑥𝑥) is negative [i.e. it sits below the 𝑥𝑥-axis] then you need 
to find the equivalent positive value – and this means you “flip it” over in the 𝑥𝑥-axis  
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It is useful to know the equations of bits of modulus graphs when they are flipped. 
Here are a couple of examples [again, make sure you understand why the equations 
alter the way we have indicated: the flipped bits have equation 𝑦𝑦 = −𝑓𝑓(𝑥𝑥) and the 
unflipped bits have equation 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)] 
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And these are useful when solving equations involving modulus functions using a 
mixture of algebra and graphs. Here is an example [nest page]: 
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Example 

Solve: 𝑥𝑥 + 4 <  |2𝑥𝑥 − 1| 

We sketch both 𝑦𝑦 = 𝑥𝑥 + 4 and 𝑦𝑦 = |2𝑥𝑥 − 1| 

 

 

                              

 

We find the 𝑥𝑥-coordinates of where they cross. 

Point A is a where 𝑥𝑥 + 4 = 2𝑥𝑥 − 1   so at 𝑥𝑥 = 5 

Point B is where  𝑥𝑥 + 4 =  −(2𝑥𝑥 − 1)  so at 𝑥𝑥 =  −1  

And then we can solve the inequality – which is asking “when does the graph of 𝑦𝑦 =
𝑥𝑥 + 4 sit below the graph of 𝑦𝑦 = |2𝑥𝑥 − 1|?” 

The answer must be when  𝑥𝑥 < −1 or 𝑥𝑥 > 5 
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MM8.2.  
Knowledge of the effect of simple transformations on the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) with 
positive or negative value of 𝑎𝑎 as represented by  𝑦𝑦 = 𝑎𝑎𝑓𝑓(𝑥𝑥) , 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝑎𝑎 ,  𝑦𝑦 =
𝑓𝑓(𝑥𝑥 + 𝑎𝑎) , 𝑦𝑦 = 𝑓𝑓(𝑎𝑎𝑥𝑥)  
 
Compositions of these transformations. Knowledge and use of the notation 𝑓𝑓�𝑔𝑔(𝑥𝑥)�.  

 

This topic tends to be poorly understood. Usually, when these ideas are first met, 
students tend to learn the rules without much understanding of what is going on. It is 
made more tricky by the fact that some of the ways graphs shift tend to be exactly 
opposite of what you might first expect;  for instance,  𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) looks like it ought 
to shift [translate] the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to the right [in the positive 𝑥𝑥 direction] by a 
distance 𝑎𝑎 BUT THAT IS WRONG!! 

We will look at each of the case in turn and explain what transformation of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)  
each represents and then we will look at a couple of examples. 

The first thing to get clear is what the notation means. You are already familiar with 
the notation 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). This notation tells you that the 𝑦𝑦 value “above” [i.e. the 𝑦𝑦 value 
for the point on the curve corresponding to the given 𝑥𝑥 value] any 𝑥𝑥 value is calculated 
using 𝑓𝑓(𝑥𝑥).  So, as an example,  for  𝑦𝑦 = 𝑥𝑥2 + 3  the 𝑦𝑦 value above 𝑥𝑥 = 2  must be 𝑦𝑦 =
22 + 3 = 7,  and similarly the 𝑦𝑦 value above 𝑥𝑥 = 4  is 19, and so on. 

We can use this to understand what the notation in this section means and then use 
our understanding to deduce how the graphs are related to the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). 
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𝒚𝒚 = 𝒂𝒂𝒇𝒇(𝒙𝒙)  

We will look at specific example: We will take 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to be 𝑦𝑦 = 𝑥𝑥3  and we will take 
𝑎𝑎 = 4 

We want to compare the graphs of 𝑦𝑦 = 𝑥𝑥3 [𝑦𝑦 = 𝑓𝑓(𝑥𝑥)] with  𝑦𝑦 = 4𝑥𝑥3 [𝑦𝑦 = 4𝑓𝑓(𝑥𝑥)] 

Here the transformation is reasonably straightforward to grasp: each 𝑦𝑦 value is four 
times as big for 𝑦𝑦 = 4𝑥𝑥3 than it is for 𝑦𝑦 = 𝑥𝑥3 . This is like taking the graph of 𝑦𝑦 = 𝑥𝑥3 
and stretching it vertically by a factor of 4, and the vertical stretching is away from the 
𝑥𝑥 axis up [when the 𝑦𝑦 values are positive] or down [when the 𝑦𝑦 values are negative] 

Here is a diagram of the before and after: 

 

 

                             

 

 

 

 

 

143



 
 

And here is a general diagram 

                            

And note that if  0 < 𝑎𝑎 < 1  then the graphs effectively get less tall : so, if 𝑎𝑎 = 1
2
 then 

the graphs of 𝑦𝑦 = 1
2
𝑓𝑓(𝑥𝑥)  would be half the height of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

And if 𝑎𝑎 is negative the heights change by |𝑎𝑎| and the graphs are flipped by the minus 
signs. 

 

Exercise 

Use a graph drawing package [e.g., DESMOS GRAPHING ] to explore the following 
pairs of functions: 

𝑦𝑦 =  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  and  𝑦𝑦 =  𝑎𝑎𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2   for 𝑎𝑎 = 2, 3,−1,−2, 1
2

,−1
2
 

𝑦𝑦 =  𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  and  𝑦𝑦 =  𝑎𝑎𝑓𝑓(𝑥𝑥) = 𝑎𝑎cos 𝑥𝑥   for 𝑎𝑎 = 2, 3,−1,−2, 1
2

,−1
2
 

What do you notice when 0 < 𝑎𝑎 < 1? 

What do you notice when 𝑎𝑎 < 0 ? 
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𝒚𝒚 = 𝒇𝒇(𝒙𝒙) + 𝒂𝒂  

We will look at specific example: we will take 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to be 𝑦𝑦 = 𝑥𝑥2  and we will take 
𝑎𝑎 = 3 

We want to compare the graphs of 𝑦𝑦 = 𝑥𝑥2 [𝑦𝑦 = 𝑓𝑓(𝑥𝑥)] with  𝑦𝑦 = 𝑥𝑥2 + 3 [𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝑎𝑎] 

If we sketch both graphs [you can do this on DESMOS GRAPHING], we can see that 
going from  𝑦𝑦 = 𝑥𝑥2 to 𝑦𝑦 = 𝑥𝑥2 + 3 all the 𝑦𝑦 values go up by 3 units. In other words, the 
graph is shifted up by 3 units [“up” means parallel to the 𝑦𝑦-axis].  We can say this more 
formally by saying that we translate the graph by �03� 

In general, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝑎𝑎 takes the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and translates it by �0𝑎𝑎� 

Exercise 

Use a graph drawing package [e.g., DESMOS GRAPHING ] to explore the following 
pairs of functions: 

𝑦𝑦 =  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  and  𝑦𝑦 =  𝑓𝑓(𝑥𝑥) + 𝑎𝑎 = 𝑥𝑥2 + 𝑎𝑎   for 𝑎𝑎 = 2, 3,−1,−2, 1
2

,−1
2
 

𝑦𝑦 =  𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  and  𝑦𝑦 =  𝑓𝑓(𝑥𝑥) + 𝑎𝑎 = 𝑎𝑎 + cos 𝑥𝑥  for 𝑎𝑎 = 2, 3,−1,−2, 1
2

,−1
2
 

What do you notice when 𝑎𝑎 < 0 ? 

 

An aside: note here we have written 𝑎𝑎 + cos 𝑥𝑥  instead of cos 𝑥𝑥 + 𝑎𝑎  as this latter 
expression is ambiguous – it could mean either (cos 𝑥𝑥) + 𝑎𝑎 , which is what we intend, 
or it could mean cos(𝑥𝑥 + 𝑎𝑎)  which is not what we intend. This sort of issue is not 
uncommon with trigonometry so you need to be a little careful with how you write things 
and how you interpret things – there are usually conventions that all mathematicians 
follow [for example contrasting cos2 𝑥𝑥 with cos 𝑥𝑥2 ]. A common example is the inverse 
trigonometric functions, which are often written as, for instance, cos−1 𝑥𝑥 . Here the −1  
is not taken to mean 1

cos𝑥𝑥
  [as we might initially expect from our discussion of indices 

above] but instead the convention is that it means “the inverse of cos” which is 
sometimes written as arcos. Later in your maths courses, you will probably learn things 
like “the secant of 𝑥𝑥"  [or sec 𝑥𝑥 ] etc, which are the specific symbols used by 
mathematicians for 1

cos𝑥𝑥
.  In the TMUA/ESAT, we are very careful with the way we use 

notation to ensure these sorts of ambiguities do not arise; and if there is any potential 
ambiguity we make sure we clarify things carefully in the way we phrase a question, 
or in the way we set out the mathematics. 
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𝒚𝒚 = 𝒇𝒇(𝒙𝒙 + 𝒂𝒂)  

This particular transformation is often poorly understood and can lead to errors. Errors 
and misunderstandings arise because it seems [perhaps intuitively at first glance?] 
that if you ADD something to an 𝑥𝑥 then things should “shift to the right”; whereas, in 
fact, the opposite happens – curves shift “to the left” [when 𝑎𝑎 is positive]. Of course, 
you could just learn what happens for this transformation, but it is [much much] better, 
as always, to understand things. We will unpack this transformation in following 
discussion: take your time working through our discussion to make sure you develop 
a good understanding.  

There are two things to unpack here. One is how to work out an expression for 
𝑓𝑓(𝑥𝑥 + 𝑎𝑎) given 𝑓𝑓(𝑥𝑥); and the other is to work out how the transformation relates to the 
graphs of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎). 

First, let’s tackle how to work out an expression for 𝑓𝑓(𝑥𝑥 + 𝑎𝑎)  given 𝑓𝑓(𝑥𝑥) . This is 
straightforward and we can look at a couple of examples to see how it works: 

Example 

Given 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2𝑥𝑥 − 5   find an expression for 𝑓𝑓(𝑥𝑥 + 3) 

We do this as follows: every 𝑥𝑥 in the expression 𝑓𝑓(𝑥𝑥) is replaced by 𝑥𝑥 + 3: 

𝑥𝑥2 + 2𝑥𝑥 − 5  →   (𝑥𝑥 + 3)2 + 2(𝑥𝑥 + 3) − 5    

So 𝑓𝑓(𝑥𝑥 + 3) =  (𝑥𝑥 + 3)2 + 2(𝑥𝑥 + 3) − 5    

   

Example 

Given 𝑓𝑓(𝑥𝑥) = cos(2𝑥𝑥)  find an expression for 𝑓𝑓(𝑥𝑥 − 𝜋𝜋
2

) 

We do this as follows: every 𝑥𝑥 in the expression 𝑓𝑓(𝑥𝑥) is replaced by 𝑥𝑥 − 𝜋𝜋
2
: 

𝑓𝑓 �𝑥𝑥 −
𝜋𝜋
2
� = cos 2 �𝑥𝑥 −

𝜋𝜋
2
� = cos(2𝑥𝑥 − 𝜋𝜋) 

We could simplify this further, but the mathematics needed to do so is outside the 
scope of the TMUA/ESAT. If you sketch 𝑦𝑦 = cos(2𝑥𝑥 − 𝜋𝜋)  you might be able to work 
out what it could simplify to.  

In this example, it is quite easy to forget that the 2 in cos(2𝑥𝑥) multiples everything that 
we replace 𝑥𝑥 by: so we must have cos 2 �𝑥𝑥 − 𝜋𝜋

2
� = cos(2𝑥𝑥 − 𝜋𝜋) and NOT cos 2𝑥𝑥 − 𝜋𝜋

2
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Now you know how to work out an expression for 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) given 𝑓𝑓(𝑥𝑥),  we turn to look 
at how the graphs of each of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) relate to each other. 

First, we need to be very clear what the notation is telling us: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥)  tells us that the 𝑦𝑦 value directly above a given 𝑥𝑥 is calculated using 𝑓𝑓(𝑥𝑥)  

𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) tells us that the 𝑦𝑦 value directly above a given 𝑥𝑥 value is calculated using 
𝑓𝑓(𝑥𝑥 + 𝑎𝑎)  

Let’s check this is clear using an example. 

Example  

Let’s look at: 

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥  and 𝑓𝑓(𝑥𝑥 + 3) 

If we were to sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we can calculate the 𝑦𝑦 values for some 𝑥𝑥 values: 

When 𝑥𝑥 = 2 , 𝑦𝑦 = 22 = 4   

When 𝑥𝑥 = 5,   𝑦𝑦 = 25 = 32 

So if we sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we would find that  

when 𝑥𝑥 is 2 the 𝑦𝑦 value directly above it would be 4 

when 𝑥𝑥 is 5 the 𝑦𝑦 value directly above it would be 32 

 

Now let’s look at what happens if we were to sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 3) 

When 𝑥𝑥 = 2, the 𝑦𝑦 value directly above it must 𝑓𝑓(2 + 3) which is 𝑓𝑓(5) and we worked 
that out to be 𝑦𝑦 = 25 = 32 

When 𝑥𝑥 = 5,   the 𝑦𝑦 value directly above it must 𝑓𝑓(5 + 3) which is 𝑓𝑓(8) and we can 
work that out to be 𝑦𝑦 = 28 = 256 

So [and think about this carefully] the 𝑦𝑦 value above a given 𝑥𝑥 value in 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 3) 
comes from the 𝑦𝑦 above the 𝑥𝑥 value that is three units further along on the sketch of 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥): 

The 𝑦𝑦 value above 𝑥𝑥 = 2 is actually 𝑓𝑓(2 + 3) = 𝑓𝑓(5) 

The 𝑦𝑦 value above 𝑥𝑥 = 5 is actually 𝑓𝑓(5 + 3) = 𝑓𝑓(8) 

We have to translate the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to the left to make sure that the 𝑦𝑦 value 
above 𝑥𝑥 = 2 in the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 3) is the one from 𝑓𝑓(5) and that the 𝑦𝑦 value 
above 𝑥𝑥 = 5 is the one from 𝑓𝑓(8).   

147



 
 

We can draw a sketch of this to show what is happening: 
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So, we can now look at this in general terms. If you look at the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) 
then the 𝑦𝑦 value above an 𝑥𝑥 value is actually 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) and this is the 𝑦𝑦 value that is 
above 𝑥𝑥 + 𝑎𝑎 on the original graph.   

This means that the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎)  is the same as the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) when 
it is translated backwards parallel to the 𝑥𝑥 axis a distance of 𝑎𝑎. We can say: 

𝒚𝒚 = 𝒇𝒇(𝒙𝒙 + 𝒂𝒂) is the same as the graph of 𝒚𝒚 = 𝒇𝒇(𝒙𝒙) translated by �−𝒂𝒂𝟎𝟎 � 

And note that if a is negative [e.g., 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 − 4) ]  then the graph shifts “to the right” 
by 4,  that is a translation of �𝟒𝟒𝟎𝟎� 

It is worth thinking carefully about this transformation – it can seem a little complicated 
with lots of 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) and 𝑦𝑦 values flying about. But once you have grasped 
what is going on, it can all seem very easy and “obvious”.75  

We strongly recommend you do the following exercise to get used to this 
transformation.  

 

Exercise 

Sketch the following in pairs of functions without using a graphing package, and then 
check your answers using a graphing package [such as DESMOS GRAPHING]. Think 
about how each pair of graphs relates to what we discussed above when unpacking 
the transformation from 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 𝑎𝑎) 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 2) = (𝑥𝑥 + 2)2 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 − 3) = (𝑥𝑥 − 3)2 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  and 𝑦𝑦 = 𝑓𝑓 �𝑥𝑥 + 𝜋𝜋
3
� = cos �𝑥𝑥 + 𝜋𝜋

3
�  

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  and 𝑦𝑦 = 𝑓𝑓 �𝑥𝑥 − 2𝜋𝜋
3
� = cos �𝑥𝑥 − 2𝜋𝜋

3
� 

 

 

 

 

 

 
75 See footnote 59.  
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𝒚𝒚 = 𝒇𝒇(𝒂𝒂𝒙𝒙)  

This transformation is very similar to the one we have just looked at. It is initially 
counter-intuitive but the reason it “squashes” a graph by a factor of 𝑎𝑎 is “obvious”76 
once you have thought it through with some examples.  

We will first look at some examples that illustrate how to find the expression for 𝑓𝑓(𝑎𝑎𝑥𝑥) 
given an expression for 𝑓𝑓(𝑥𝑥); and then we will look at how the graphs of 𝑓𝑓(𝑎𝑎𝑥𝑥) and 
𝑓𝑓(𝑥𝑥) relate.  

 

Example 

Given 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  find an expression for 𝑓𝑓(3𝑥𝑥)  

To find 𝑓𝑓(3𝑥𝑥) we replace 𝑥𝑥 by 3𝑥𝑥:  𝑓𝑓(3𝑥𝑥) = (3𝑥𝑥)2 = 9𝑥𝑥2 

And note that we do NOT write 𝑓𝑓(3𝑥𝑥) = 3𝑥𝑥2  

 

Example 

Given 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = cos(2𝑥𝑥 + 30)   find an expression for 𝑓𝑓(4𝑥𝑥)  

As before, we replace every 𝑥𝑥 in 𝑓𝑓(𝑥𝑥) by 4𝑥𝑥 to get 

𝑓𝑓(4𝑥𝑥) = cos(2(4𝑥𝑥) + 30) = cos(8𝑥𝑥 + 30)  

 

 

Now, let’s turn to look at how the graphs of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)  and  𝑦𝑦 = 𝑓𝑓(𝑎𝑎𝑥𝑥) are related. We 
will do this using simple examples. You will note that the discussion is similar to that 
we set out for 𝑓𝑓(𝑎𝑎 + 𝑥𝑥) above.  

 

 

 

 

 

 
76 See footnote 75.  
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Example  

Let’s look at: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 2  and 𝑓𝑓(2𝑥𝑥) 

If we were to sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we can calculate the 𝑦𝑦 values for some 𝑥𝑥 values: 

When 𝑥𝑥 = −1 , 𝑦𝑦 = −2 

When 𝑥𝑥 = 0 ,   𝑦𝑦 = 2 

When 𝑥𝑥 = 1 , 𝑦𝑦 = 0 

When 𝑥𝑥 = 2 , 𝑦𝑦 = −2 

So, if we sketch 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we would find that  

when 𝑥𝑥 is −1 the 𝑦𝑦 value directly above it would be −2 

when 𝑥𝑥 is 2 the 𝑦𝑦 value directly above it would be −2 

….and so on  

 

Now let’s look at what happens if we were to sketch 𝑦𝑦 = 𝑓𝑓(2𝑥𝑥) 

When 𝑥𝑥 = −1, the 𝑦𝑦 value directly above it must 𝑓𝑓(2 × −1) which is 𝑓𝑓(−2) and this is 
−18 

When 𝑥𝑥 = 0,   the 𝑦𝑦 value directly above it must 𝑓𝑓(2 × 0) which is 𝑓𝑓(0) and this is 2 

When 𝑥𝑥 = 1, the 𝑦𝑦 value directly above it must 𝑓𝑓(2 × 1) which is 𝑓𝑓(2) and this is −2 

When 𝑥𝑥 = 2, the 𝑦𝑦 value directly above it must 𝑓𝑓(2 × 2) which is 𝑓𝑓(4) and this is 18 

So [and think about this carefully] the 𝑦𝑦 value above a given 𝑥𝑥 value in 𝑦𝑦 = 𝑓𝑓(2𝑥𝑥) 
comes from the 𝑦𝑦 above the 𝑥𝑥 value that is twice as large on the 𝑥𝑥-axis on the sketch 
of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

We have to “squash” the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) towards the 𝑦𝑦-axis by a factor of 2.  

We can draw some diagrams to show what is happening here: 
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Exercise 

Using  a graphing package [such as DESMOS GRAPHING], draw the following pairs 
of functions: 

From the example above:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 2  and 𝑓𝑓(2𝑥𝑥) = (2𝑥𝑥)3 − 3(2𝑥𝑥)2 + 2  

Then look at 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 2  and 𝑓𝑓 �1
2
𝑥𝑥� = �1

2
𝑥𝑥�

3
− 3 �1

2
𝑥𝑥�

2
+ 2     

What does this tell you about 𝑦𝑦 = 𝑓𝑓(𝑎𝑎𝑥𝑥)  when 0 < 𝑎𝑎 < 1 ? 

Now look at 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 2  and 𝑓𝑓(−2𝑥𝑥) = (−2𝑥𝑥)3 − 3(−2𝑥𝑥)2 + 2 ; in this,   what 
does the minus sign do in 𝑓𝑓(−2𝑥𝑥) and what does the 2 do in 𝑓𝑓(−2𝑥𝑥)? Can you explain 
your answers? 

 

Let’s summarise the transformations we have looked at.  

𝑎𝑎𝑓𝑓(𝑥𝑥) 

 
Vertical [parallel to 𝑦𝑦 -axis] stretch 
away from 𝑥𝑥-axis by a factor of 𝑎𝑎.  
If 𝑎𝑎 < 0 [i.e., negative] there is a 
reflection in the 𝑥𝑥-axis too. 
 

𝑓𝑓(𝑥𝑥) + 𝑎𝑎 
 
Translation by �0𝑎𝑎� 
 

𝑓𝑓(𝑥𝑥 + 𝑎𝑎) 
 
Translation by �−𝑎𝑎0 � 
 

𝑓𝑓(𝑎𝑎𝑥𝑥) 

 
Horizontal [parallel to 𝑥𝑥-axis] squash 
away from 𝑦𝑦-axis by a factor of 𝑎𝑎.  
If 𝑎𝑎 < 0 [i.e., negative] there is a 
reflection in the 𝑦𝑦-axis too. 
 

 

 

Exercise 

Sketch 𝑦𝑦 = |𝑓𝑓(𝑥𝑥)|  and 𝑦𝑦 = 𝑓𝑓(|𝑥𝑥|) for   𝑓𝑓(𝑥𝑥) = sin 𝑥𝑥  and for 𝑦𝑦 = cos 𝑥𝑥 

You can use DESMOS GRAPHING to help you, but try to sketch the graphs without 
using any graphing packages 
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Combining these transformations 

In this section we will look at some examples where more than one of the 
transformations listed above is used.  

It is important to be very careful when using certain combinations of the 
transformations above because the order in which you interpret the transformation 
must be correct. 

We will look at this using a test case: 

Consider  𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  and 𝑦𝑦 = 𝑓𝑓 �2𝑥𝑥 + 𝜋𝜋
6
� = cos �2𝑥𝑥 + 𝜋𝜋

6
� 

If you were asked to sketch 𝑦𝑦 = cos 𝑥𝑥 and use your sketch to deduce a sketch of 𝑦𝑦 =
= cos �2𝑥𝑥 + 𝜋𝜋

6
�, it would be tempting to suggest it is  

1. a “horizontal squash” by a factor of 2 followed by a translation by �−
𝜋𝜋
6
0 �;  

2. or perhaps it is tempting to suggest that it is a translation by �−
𝜋𝜋
6
0 � followed by a 

“horizontal squash” by a factor of 2 . 

Before reading on, which of the two suggested transformations is the one you would 
choose? Or would you propose something else instead? You can use a graph 
sketching package to explore before we look at the answer.  

To answer this, we can look at the transformations suggested in stages: 

  

1. “horizontal squash” by a factor of 2 followed by a translation by �−
𝜋𝜋
6
0 �: 

cos 𝑥𝑥   →  cos 2𝑥𝑥  → cos 2 �𝑥𝑥 + 𝜋𝜋
6
� = cos �2𝑥𝑥 + 𝜋𝜋

3
�    OH NO !!! 

   

2. translation by �−
𝜋𝜋
6
0 � followed by a “horizontal squash” by a factor of 2  

cos 𝑥𝑥   →  cos �𝑥𝑥 + 𝜋𝜋
6
�   → cos �2𝑥𝑥 + 𝜋𝜋

6
�   

  

We can see here that 2 gives the correct final answer and 1 gives the incorrect answer. 
Can you explain why?77 

We can write the function slightly differently to get another perspective on the 
transformation: 

 
77 If we replace 𝑥𝑥 by 2𝑥𝑥 first, then the translation  by  𝜋𝜋

6
 is also affected by the 2 in the 2𝑥𝑥  
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3. “horizontal squash” by a factor of 2 followed by a translation by �−
𝜋𝜋
12
0 �: 

cos 𝑥𝑥   →  cos 2𝑥𝑥  → cos 2 �𝑥𝑥 + 𝜋𝜋
12
� = cos �2𝑥𝑥 + 𝜋𝜋

6
�    

Exercise 

Consider the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥   

Sketch both 𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + 2)  and 𝑦𝑦 = 9𝑓𝑓(𝑥𝑥) 

What do you notice? Explain your answer. 

Now consider 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = log10 𝑥𝑥 

Sketch both 𝑦𝑦 = 𝑓𝑓(10𝑥𝑥)  and 𝑦𝑦 = 1 + 𝑓𝑓(𝑥𝑥) 

What do you notice? Explain your answer. 

 

The notation 𝒇𝒇�𝒈𝒈(𝒙𝒙)�. 

We will look briefly at the notation 𝑓𝑓�𝑔𝑔(𝑥𝑥)�  [which we tend to say as “𝑓𝑓 of 𝑔𝑔 of 𝑥𝑥”] 

We have been using the ideas connected to this notation already. 

Let’s take a simple case to illustrate how to unpack his notation: 

Let’s take 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 and 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3𝑥𝑥 − 2  

The 𝑥𝑥 in 𝑓𝑓(𝑥𝑥) is just a label to tell you what to do with what you input into the function. 
That is once you are given an 𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡 for 𝑓𝑓(𝑥𝑥) , the output is given as (𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡)2 +
3 × (𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡) − 2  

So, you can guess what 𝑓𝑓�𝑔𝑔(𝑥𝑥)� might mean: it means that you take 𝑔𝑔(𝑥𝑥) as the input 
for 𝑓𝑓(𝑥𝑥). We can write this out: 

1. Replace 𝑥𝑥 [which labels the input to 𝑓𝑓(𝑥𝑥)] in 𝑓𝑓(𝑥𝑥) by 𝑔𝑔(𝑥𝑥): 

𝑓𝑓�𝑔𝑔(𝑥𝑥)� = [𝑔𝑔(𝑥𝑥)]2 + 3 × 𝑔𝑔(𝑥𝑥) − 2 

2. And then replace 𝑔𝑔(𝑥𝑥) by 2𝑥𝑥 

𝑓𝑓�𝑔𝑔(𝑥𝑥)� = 𝑓𝑓(2𝑥𝑥) = [2𝑥𝑥]2 + 3 × 2𝑥𝑥 − 2 = 4𝑥𝑥2 + 6𝑥𝑥 − 2 

But it is easier to put 2𝑥𝑥 in immediately and skip step 1. 
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Exercise 

Given  

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  

𝑔𝑔(𝑥𝑥) = 𝑥𝑥3 − 3  

ℎ(𝑥𝑥) = 2𝑥𝑥+3
𝑥𝑥−4

  

Find simplified expression for  

𝑓𝑓(𝑔𝑔(𝑥𝑥))  

𝑔𝑔�𝑓𝑓(𝑥𝑥)�  

𝑔𝑔(ℎ(𝑥𝑥))  

ℎ(𝑔𝑔(𝑥𝑥))  

What do you notice? 

Is it true that 𝑓𝑓�𝑔𝑔(𝑥𝑥)� = 𝑔𝑔�𝑓𝑓(𝑥𝑥)�?  
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MM8.3 

Understand how altering the values of 𝑚𝑚 and 𝑐𝑐 affects the graph of  𝑦𝑦 = 𝑚𝑚𝑥𝑥 +  𝑐𝑐.   

 

To understand how 𝑚𝑚 and 𝑐𝑐 affects the graph of  𝑦𝑦 = 𝑚𝑚𝑥𝑥 +  𝑐𝑐 consider either of the 
following sequence of transformation. You will need to use your knowledge of graph 
transformations that we discussed above and make use of a graph sketching package 
too to enhance your understanding: 

 

𝑦𝑦 = 𝑥𝑥 → 𝑦𝑦 = 𝑚𝑚𝑥𝑥 → 𝑦𝑦 = 𝑚𝑚�𝑥𝑥 +
𝑐𝑐
𝑚𝑚
� = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

 

𝑦𝑦 = 𝑥𝑥 → 𝑦𝑦 = 𝑥𝑥 + 𝑐𝑐 → 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 

 

Exercise 

How did you deal with 𝑦𝑦 = 𝑥𝑥 → 𝑦𝑦 = 𝑥𝑥 + 𝑐𝑐 above?  Did you use 𝑓𝑓(𝑥𝑥) + 𝑐𝑐 or 𝑓𝑓(𝑥𝑥 + 𝑐𝑐) ? 

Pick some pairs of values for 𝑚𝑚  and 𝑐𝑐  and then follow though the graph 
transformations above step by step using a graph sketching package.  
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MM8.4 

Understand how altering the values of 𝑎𝑎 , 𝑏𝑏  and 𝑐𝑐  in 𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 + 𝑐𝑐  affects the 
corresponding graph. 

 

You should be able to work out what each letter does by breaking down the expression 
into various graph transformations [we tend to assume 𝑎𝑎 ≠ 0]: 

Here is one way of doing this [when 𝑎𝑎 > 0]: 

𝑦𝑦 = 𝑥𝑥2   →   𝑦𝑦 = �√𝑎𝑎 𝑥𝑥�
2

= 𝑎𝑎𝑥𝑥2   →   𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2   →   𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 + 𝑐𝑐 

And here is another subtly different way 

𝑦𝑦 = 𝑥𝑥2 → 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 → 𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 → 𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 + 𝑐𝑐 

In the first we used 𝑓𝑓(√𝑎𝑎 𝑥𝑥) [horizontal squash when 𝑎𝑎 > 0] and in the second we 
used  𝑎𝑎𝑓𝑓(𝑥𝑥) [vertical stretch] Check that you get the same graph in both cases by 
trying some simple numbers and using a graph sketching package for 𝑎𝑎, eg 𝑎𝑎 = 4.  

As an aside: note that sometimes we can only use one method, e.g. when 𝑎𝑎 = −4 
we cannot use √−4.  But we could introduce an extra step: 

𝑦𝑦 = 𝑥𝑥2 → 𝑦𝑦 = ��|𝑎𝑎| 𝑥𝑥�
2

= |𝑎𝑎|𝑥𝑥2 → 𝑦𝑦 = −|𝑎𝑎|𝑥𝑥2  → 𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 → 𝑦𝑦 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 + 𝑐𝑐  

But this is a bit cumbersome.  

  

Exercise 

Pick some sets of values for 𝑎𝑎, 𝑏𝑏  and 𝑐𝑐  and then follow though the graph 
transformations above step by step using a graph sketching package.  
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The last three sections of the specification have been covered in earlier sections: 

 

MM8.5 

Use differentiation to help determine the shape of the graph of a given function; 
including finding stationary points (excluding inflexions); and when the function is 
increasing or decreasing.  

 

 

 

MM8.6 

Use algebraic techniques to determine where the graph of a function intersects the 
coordinate axes; appreciate the possible numbers of real roots a general polynomial 
can possess. 

 

 

 

MM8.7  

Geometric interpretation of algebraic solutions of equations; relationship between the 
intersections of two graphs and the solutions of the corresponding simultaneous 
equations. 
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